
GEOMETRIC INVERSE PROBLEMS ON ANOSOV MANIFOLDS

THIBAULT LEFEUVRE

Abstract. We survey some recent progress on geometric inverse problems on closed Anosov
manifolds i.e. compact Riemannian manifolds without boundary for which the geodesic flow
is uniformly hyperbolic on the unit tangent bundle, such as negatively-curved manifolds.
These geometric inverse problems include:
• The study of the geodesic X-ray transform which consists in reconstructing a function

(or a symmetric tensor) from the knowledge of its integral along closed geodesics,
• The marked length spectrum conjecture (also known as the Burns-Katok [BK85] conjec-

ture) and related topics which aim to investigate whether the length of closed geodesics
(marked by the free homotopy of the manifold) of a Riemannian space determines the
metric,

• The holonomy inverse problem, which investigates whether the holonomy of a connec-
tion along closed geodesics determine the connection.

All these questions bring together various fields such as Riemannian geometry, uniformly
hyperbolic (or Anosov) dynamical systems, Pollicott-Ruelle theory of resonances and mi-
crolocal/semiclassical analysis, and borrow the most recent technologies of these fields. The
main ideas of proofs are given and the technical tools are presented in order to make the
exposition self-contained.
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1. Introduction

1.1. Historical background. Geometric inverse problems have a long history, going back
maybe to the seminal paper of Kac “Can one hear the shape of a drum" [Kac66], where the
following question is asked: does the spectrum of the Laplacian ∆g on a smooth Riemannian
manifold (M, g) determine its Riemannian1 structure? Shortly after (and even before!), this
question was answered in a negative way as Milnor [Mil64] exhibited pairs of isospectral tori
which are not isometric. Nevertheless, it was conjectured for a long time that in negative
curvature, due to the chaotic properties of the geodesic flow, the Laplace spectrum should be
sufficient to determine the manifold. It was actually proved to be false, as Vigneras [Vig80]
exhibited pairs of hyperbolic surfaces that are isospectral but not isometric. Even in the plane,
isospectral non-isometric domains were found [GWW92] but these are piecewise smooth and
is not known yet if such a spectral rigidity result holds for smooth domains. Nevertheless,
spectral rigidity holds for disks and ellipses of small eccentricity by a recent result [HZ19]. We
also refer to the survey of Zelditch [Zel04] for further discussions on inverse spectral problems.

Building on these spectral considerations, the general philosophy behind geometric inverse
problems is to recover a complete geometric data (such as a metric, a connection, a potential,
a Higgs field, ...) from the knowledge of certain partial quantities (also called measurements)
such as the Laplace spectrum, the length of closed geodesics, the holonomy of connections
along closed orbits, etc. There are many geometric contexts in which one can phrase such
problems and this survey is focused on closed Anosov manifolds: these are compact Riemann-
ian manifolds without boundary on which the geodesic flow (on the unit tangent bundle) is
uniformly hyperbolic (also called Anosov in the literature), see (2.4). A typical (and histor-
ical!) example is provided by manifolds with negative sectional curvature [Ano67]. These
flows have very chaotic properties such as a strong sensitivity to initial conditions. Moreover,
closed geodesics (which correspond to closed orbits of the geodesic flow) are dense and one can
legitimately expect these to carry important dynamical information. In the inverse problems
studied in this survey, the question will be to understand to what extent one can recover a
global geometric object (like a metric) from partial information carried by closed geodesics
(their length, for example).

This topic has enjoyed considerable progress in the past forty years. In the early 80’s,
Guillemin-Kazhdan [GK80a, GK80b] initiated a new turn in the field by showing the infini-
tesimal spectral rigidity of negatively-curved surfaces: given a Riemannian manifold (M, g), it
is said to be infinitesimally spectrally rigid if any isospectral deformation (gλ)λ∈(−1,1) of the
metric (such that g0 = g), i.e. such that spec(∆gλ) = spec(∆g), is isometric to g in the sense
that there exists an isotopy (φλ)λ∈(−1,1) such that φ∗λgλ = g. The proof (which will be given in
§7.2) is somehow exemplary of what we will be concerned about in this survey as it combines
elements from three distinct (but of course related!) fields of modern mathematics:

• microlocal analysis, with the use of the Duistermaat-Guillemin trace formula [DG75]
for elliptic operators,
• hyperbolic dynamical systems, with the use of the Livsic Theorem [Liv72],

1Kac’s discussion was for smooth domains of Rn but it is rather natural to formulate it for a general smooth
Riemannian manifold.
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• and Riemannian geometry, with the use of a crucial energy identity based on the
Riemannian structure and called the Pestov identity.

This trichotomy will also appear at various places throughout the manuscript.
Following the Guillemin-Kazhdan [GK80a, GK80b] approach, we will study the following

questions:

(1) Does the integral of a function (or a symmetric tensor field of order m ∈ N) along
closed geodesics determine the function? The underlying operator of integration of
symmetric m-tensors along closed geodesics is called the geodesic X-ray transform,
denoted by Im, and plays a crucial role in several problems. A vast literature has
been devoted to this question in the past twenty years [GK80a, GK80b, CS98, DS03,
PSU14, PSU15, Gui17a].

(2) Does the length of closed geodesics (marked by the free homotopy of the manifold)
determines the Riemannian structure of (M, g)? This is known as the marked length
spectrum conjecture (or the Burns-Katok [BK85] conjecture). We will see that the
differential of the marked length spectrum is precisely (one half of) the geodesic X-ray
transform of symmetric 2-tensors I2. As a consequence, proving important analytic
properties (such as stability estimates) on the X-ray transform will yield interesting
(local) rigidity results on the marked length spectrum. This analytic approach was
recently developed in [GL19d, GKL19, GL19b, GL19c]. Prior to these articles, partial
or complete results of a more geometric flavour can be found in [Kat88, Ota90, Cro90,
BCG95, Ham99].

(3) Given a vector bundle E →M equipped with a unitary connection ∇E (not necessar-
ily flat!), does the holonomy of the connection along closed geodesics determine the
connection? This question reveals unexpected difficulties, especially when E is not a
line bundle or M is not two-dimensional. In the particular case of line bundles, we
will see that it is connected to the injectivity (modulo a natural kernel) of the X-ray
transform on 1-forms I1. This question, although less renowned (all the references are
essentially contained in the list [Pat09, Pat11, Pat12, Pat13, GPSU16, CL20]), turns
out to be as interesting (if not more!) as the two previous.

The study of geometric inverse problems (on closed Anosov manifolds) can now benefit from
the recent development of the theory of Pollicott-Ruelle resonances for uniformly hyperbolic
flows. This field, going back to earlier work by Ruelle in the 70’s, has led to a considerable
amount of work over the past twenty years [Liv04, BL07, FS11, FT13, NZ15, DZ16, FT17,
GW17, Jé19, GGHW20, TZ20] and is now well-understood: the main idea is to describe the
long-time statistical behaviour of a given dynamical system T defined on the phase space X
thanks to the spectrum (when it can be defined) of its (unweighted) transfer operator, namely:

L : C0(X)→ C0(X), Lf(x) =
∑
Ty=x

f(y).

In order to obtain a true spectrum in C, one usually needs to twist the space and work with
other regularities than continuous functions C0(X). We refer to the recent book [Bal18] for fur-
ther details on this approach. When the system is a uniformly hyperbolic (also called Anosov)
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flow, as defined in (2.4), the modern way to do this is to work with a scale of anisotropic
Hilbert (or Banach) spaces which are spaces of distributions with low regularity in the ex-
panding direction and high regularity in the contracting direction. The spaces constructed
are usually non canonical but the spectrum defined is and is called the set of Pollicott-Ruelle
resonances.

<(z)

=(z)

0

spectral gap

Figure 1. Pollicott-Ruelle resonances of the geodesic flow. The existence of a spectral gap
implies that the flow is exponentially mixing with respect to the Liouville measure.

We will apply this toolbox to the specific case of an Anosov geodesic flow, hence the study
of Anosov manifolds. This situation occurs as long as the Riemannian manifold (M, g) ex-
hibits “enough" areas of negative sectional curvature (see [Ebe73] for further details). As the
geodesic flow preserves a canonical contact structure (the Liouville one-form), finer microlo-
cal properties can proved. For instance, the Pollicott-Ruelle resonances are all located in a
half-space {<(z) < −δ} (except 0) which is called a spectral gap and implies that the flow is
exponentially mixing with respect to the Liouville measure [Liv04], see (4.3). They also enjoy
the additional (and remarkable!) property to be concentrated in strips [FT13]. As we will see,
this microlocal perspective on the dynamical properties of the geodesic flow plays a crucial
role in our study, as it allows to describe in a very accurate way the wavefront set (namely the
singularities) of some important integral operators Πm acting on symmetric m-tensors, called
generalized X-ray transforms, which will replace at some point the classical X-ray transforms
Im.

We also point out that much of this theory can be phrased on manifolds with boundary and
has also attracted considerable attention. The natural setting is that of manifolds with strictly
convex boundary, absence of conjugate points and a hyperbolic trapped set, see [Gui17b,
GM18, Lef19, Lef18]. In an even simpler setting, one analogous problem to the Burns-Katok
conjecture is Michel’s conjecture [Mic82] on simple Riemannian manifolds (topological balls
with strictly convex boundary and no conjugate points): it asserts that the boundary distance
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function, namely the Riemannian distance between each pair of points on the boundary,
determines the Riemannian structure of the manifold. Partial attempts to solve this conjecture
can be found in [Gro83, BCG95, CDS00, SU04, BI10]. Although major breakthroughs have
been achieved in the past fifteen years [PU05, UV16, SUV17], it is still open at the moment. It
turns out that some recent work [CEG20] has shown that Michel’s conjecture would actually
be obtained as a corollary of the Burns-Katok conjecture if it were to be proved.

Lastly, let us point out that, although we will adopt a more concise way of writing (es-
pecially by avoiding the use of expressions in local coordinates), much of the basic tools of
geometric inverse problems (such as symmetric tensor analysis) were already developed in
Sharafutdinov’s book [Sha94] on integral geometry. Later, Merry-Paternain [Pat] published
very detailed and accessible lecture notes (with an emphasis on surfaces) to the field which
might be useful for the reader to get familiar with elementary notions. The emphasis of the
current survey is on the most recent developments of the field, namely the recurrent use of
microlocal analysis, especially through the use of techniques from Pollicott-Ruelle theory.

1.2. Organization of the paper. Part 1 introduces many notions and standard results of
Riemannian geometry, hyperbolic dynamical systems and microlocal analysis, which will be
heavily used in Part 2. In Section §2, we recall some elements of Riemannian geometry, in
particular the horizontal and vertical differentials and discuss the case where the tangent
bundle TM is twisted by a Hermitian vector bundle E . We also introduce the notion of
Anosov Riemannian manifolds and discuss some of their basic properties. In §3, we introduce
tensor analysis on Riemannian manifolds and explain the links with Fourier analysis in the
fibers of the unit tangent bundle SM . In Section §4, we introduce the microlocal framework
allowing to study Anosov dynamics from a spectral point of view. In particular, we define
the notion of Pollicott-Ruelle resonances. For readers who are not familiar with microlocal
calculus, we detailed some of the main results involving pseudodifferential operators that are
used throughout the manuscript in an Appendix A. Eventually, in Section §5, we explain the
Livsic theory of hyperbolic dynamical systems and discuss both some classical and new results
in the light of the microlocal framework of Section §4.

In a second Part 2, we study the so-called geometric inverse problems in the context of closed
Anosov Riemannian manifolds. In Section §6, we study the geodesic X-ray transform from
two perspectives: first of all, from a Riemannian viewpoint by means of an L2-energy identity
called the Pestov identity ; second, from a more modern approach using pseudodifferential
operators and Pollicott-Ruelle resonances. In Section §7, we introduce the notion of marked
length spectrum (i.e. the length of closed geodesics marked by the free homotopy of the
manifold) and state the Burns-Katok conjecture; we also present some partial results towards
its resolution. Section §8 is devoted to the study of the holonomy problem. In Section §9, we
sum up all the open questions.

1.3. Acknowledgement. I warmly thank friends, collaborators and colleagues for several
discussions over the past three years which gave birth to this manuscript: Viviane Bal-
adi, Yann Chaubet, Nguyen Viet Dang, Frédéric Faure, Hugo Federico, Livio Flaminio,
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Sébastien Gouëzel, Malo Jézéquel, Gerhard Knieper, Benjamin Küster, Stéphane Nonnen-
macher, Gabriel Rivière, Mikko Salo, Gabriel Paternain, Gunther Uhlmann, Andras Vasy,
Maciej Zworski. I am particularly grateful to Yannick Guedes Bonthonneau, Mihajlo Cekić
and Colin Guillarmou for extensive discussions over the years.
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Part 1. Preliminary tools

2. Elements of Riemannian geometry

In this first section, we recall some standards elements of Riemannian geometry. We refer
to [Pat99] for further details, especially on the geodesic dynamics. We also refer to [PSU15,
GPSU16] for the details of the computations.

2.1. Horizontal and vertical differentials. Let (M, g) be a smooth Riemannian manifold
of arbitrary dimension n ≥ 2. Denote by

SM = {(x, v) ∈ TM | |v|g = 1} ,

its unit tangent bundle. We let π : SM → M be the projection on the base. There is a
canonical splitting of the tangent bundle to SM as:

T (SM) = H⊕ V⊕ RX,

where X is the geodesic vector field, V := ker dπ is the vertical space and H is the horizontal
space2 defined in the following way. Consider K : T (SM)→ TM ; the connection map defined
as follows: consider (x, v) ∈ SM,w ∈ T(x,v)(SM) and a curve (−ε, ε) 3 t 7→ z(t) ∈ SM such
that z(0) = (x, v), ż(0) = w; write z(t) = (x(t), v(t)); then K(x,v)(w) := ∇ẋ(t)v(t)|t=0. We
denote by gSas the Sasaki metric on SM , which is the canonical metric on the unit tangent
bundle, defined by:

gSas(w,w
′) := g(dπ(w), dπ(w′)) + g(K(w),K(w′)).

Any vector w ∈ T (SM) can be decomposed according to the splitting

w = α(w)X + wH + wV,

where α is the Liouville 1-form3, wH ∈ H, wV ∈ V. The Liouville 1-form is a contact one-
form given by α(w) = gSas(X,w). It induces a volume form α ∧ (dα)n−1 which is called the
Liouville measure (by abuse of notations, the density is identified with the volume form). If
f ∈ C∞(SM), its gradient computed with respect to the Sasaki metric can be written as:

∇Sasf = (Xf)X + ∇̃Hf + ∇̃Vf,

where ∇̃Hf ∈ H is the horizontal gradient, ∇̃Vf ∈ V is the vertical gradient.
We then consider the vector bundle N → SM whose fiber N (x, v) over (x, v) ∈ SM is

given by {v}⊥. For every (x, v) ∈ SM , the maps

(H(x, v), gSas)
dπ→ (N (x, v), g), (V(x, v), gSas)

K→ (N (x, v), g)

are isometries. These isomorphisms allow to decompose H ⊕ V ' N ⊕N by considering the
isometry

H⊕ V→ N ⊕N , w → (dπ(w),K(w)).

2We use the convention that H := (V⊕ RX)⊥, and not V⊥ as usual. In particular, if M is n-dimensional,
then H is (n− 1)-dimensional.

3Also called the contact 1-form. It satisfies ıXα = 1, ıXdα = 0.
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As a consequence, H can be identified with {(w, 0), w ∈ N} ⊂ N⊕N , and V with {(0, w), w ∈ N}.
In particular, the operator ∇̃H, ∇̃V can be seen to take values inN by considering∇H := dπ∇̃H
and ∇V := K∇̃V instead, which we will do from now on.

The geodesic vector field seen as a differential operator of order 1 induces a differential
operator (still denoted by X) X : C∞(SM,N ) → C∞(SM,N ) defined in the following
way: consider a section w ∈ C∞(SM,N ), a point (x, v) and denote by t 7→ γ(x,v)(t) ∈ M

the geodesic it generates. Then t 7→ (γ(x,v)(t), w(t)) is a well-defined vector field along the
geodesic (which is everywhere orthogonal to the direction of the geodesic) and we can consider
its covariant derivative

Dw(t)

dt

∣∣∣∣
t=0

=: Xw(x, v).

Note that it is a well-defined section of N , i.e. it is everywhere orthogonal to v as the covariant
derivative preserves this property. The propagator R(t) : C∞(SM,N )→ C∞(SM,N ) of the
operator X is defined to be the (unique) solution of the operator-valued ODE:

Ṙ(t) = −XR(t), R(0) = 1.

It easy to check that given f ∈ C∞(SM,N ) and (x, v) ∈ SM , (R(t)f)(x, v) is the parallel
transport of the vector f(ϕ−t(x, v)) along the geodesic segment [0, t] 3 s 7→ π(ϕ−s(x, v)). In
particular, this propagator satisfies the obvious bound ‖R(t)‖L2(SM,N )→L2(SM,N ) ≤ 1.

Moreover, X also induces an operator on C∞(SM,End(N )) (once again, still denoted by
X) by requiring the following Leibniz rule to be satisfied: for all w ∈ C∞(SM,N ), U ∈
C∞(SM,End(N )):

X(U · w)(x, v) = (XU)(x, v) · w(x, v) + U(x, v) · (Xw(x, v)).

The Riemann curvature tensor R defined as usual for X,Y ∈ C∞(M,TM) by

R(X,Y ) := ∇X∇Y −∇Y∇Y −∇[X,Y ]

induces a symmetric section R ∈ C∞(SM,End(N )) defined by

∀(x, v) ∈ SM,w ∈ N (x, v), R(x, v) · w := Rx(w, v)v. (2.1)

The operators previously introduced satisfy commutation formulas (see [PSU15, Lemma 2.1]
for instance):

[X,∇V] = −∇H, [X,∇H] = R∇V. (2.2)

The adjoint operators to∇V,H are the respective horizontal and vertical divergence i.e. ∇∗V,H =

−divV,H. These operators satisfy the commutation formula (see [PSU15, Lemma 2.1] for
instance):

divH ∇V − divV ∇H = (n− 1)X, [X,divV] = −divH, [X,divH] = −divVR.

These commutation relations will be used in Section §6 in order to derive the Pestov identity
(see Lemma 6.6).
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2.2. Twist by a vector bundle. We now consider a Hermitian vector bundle E → M

of rank r equipped with a unitary connection ∇E . Using the fibration π : SM → M , we
can pullback the pair (E ,∇E) over SM and consider the bundle π∗E → SM equipped with
the pullback connection π∗∇E . If (e1, ..., er) is a smooth local orthonormal basis of E (in a
neighborhood of a point x0 ∈M), then smooth sections f ∈ C∞(SM, π∗E) can be written in
a neighborhood of x0 as:

f(x, v) =

r∑
k=1

fk(x, v)ek(x) ∈ Ex,

where fk ∈ C∞(SM) is only locally defined.
The geodesic vector field X induces an operator

X := (π∗∇E)X : C∞(SM, π∗E)→ C∞(SM, π∗E).

As before, this operator gives rise in turn to an operator (still denoted byX)X : C∞(SM,N ⊗
π∗E) → C∞(SM,N ⊗ π∗E) which acts in the following way: given local sections w ∈
C∞(SM,N ) and f ∈ C∞(SM, π∗E):

X(w ⊗ f) := (Xw)⊗ f + w ⊗ (Xf).

The connection π∗∇E gives rise as before to differential operators:

∇EH,V : C∞(SM, π∗E)→ C∞(SM, π∗E ⊗ N ),

defined in the following way: given f ∈ C∞(SM, π∗E), the covariant derivative (π∗∇E)f ∈
C∞(SM, π∗E ⊗ T ∗(SM)) can be identified with an element of C∞(SM, π∗E ⊗ T (SM)) by
using the musical isomorphism T ∗(SM) → T (SM) induced by the Sasaki metric. Using the
maps dπ and K, one can then consider the projections:

∇EHf := dπ(π∗∇Ef), ∇EVf := K(π∗∇Ef),

as elements taking values in π∗E ⊗ N . In local coordinates, these operators have explicit
expressions in terms of the connection 1-form A4 and we refer to [GPSU16, Lemma 3.2] for
further details.

We denote by fE ∈ C∞(M,Λ2T ∗M ⊗Endsk(E)) the curvature tensor fE := (d∇
E
)2 induced

by the connection ∇E , where d∇E denotes the exterior derivative of the connection. We
introduce the following operator F E ∈ C∞(SM,N ⊗ Endsk(E)) defined by:

〈fEx (v, w)e, e′〉 = 〈F E(x, v)e, w ⊗ e′〉,

where (x, v) ∈ SM,w ∈ N (x, v) = {v}⊥ and e, e′ ∈ Ex. The twisted operators ∇EH,V also enjoy
commuting properties which involve this operator F E . More precisely, we have (see [GPSU16,
Lemma 3.2]):

[X,∇EV] = −∇EH, [X,∇EH] = R∇EV + F E . (2.3)

4Given a point x0, taking local coordinates around x0, we can write the connection ∇E = d + A, where
A ∈ C∞(U, T ∗M ⊗ Endsk(E)) is called the connection 1-form and U ⊂ Rn is a trivializaing neighborhood.
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The adjoint operators to ∇EV,H are the respective twisted horizontal and vertical divergence
i.e. (∇EV,H)∗ = −divEV,H, which satisfy:

divEH ∇V − divEV ∇H = (n− 1)X, [X,divEV] = −divEH, [X,divEH] = −divVR+ (F E)∗.

2.3. Anosov Riemannian manifolds. We write M := SM for the sake of simplicity. We
say that the Riemannian manifold (M, g) is Anosov if there there exists a continuous flow-
invariant splitting of TM such that:

TM = R ·X ⊕ Es ⊕ Eu,

where X is the geodesic vector field, Es and Eu are the stable and unstable vector bundles
such that:

∀t ≥ 0, ∀w ∈ Es, |dϕt(w)| ≤ Ce−tλ|w|,
∀t ≤ 0, ∀w ∈ Eu, |dϕt(w)| ≤ Ce−|t|λ|w|, (2.4)

where the constants C, λ > 0 are uniform and the metric inducing the norm | · | is arbitrary.
Moreover, it can be shown that

H⊕ V = Es ⊕ Eu = kerα,

where we recall that α is the contact 1-form. Examples of Anosov manifolds are provided by
manifolds with negative sectional curvature [Ano67].

It is well-known that the identification of H and V withN allows to describe in a nice fashion
the differential of the geodesic flow via solutions to the Jacobi equations. More precisely,
following the previous paragraph, given (x, v) ∈ SM and w ∈ Es(x, v)⊕Eu(x, v), we can write
dϕt(w) = (wH(t), wV(t)), where wH,V(t) ∈ N (ϕt(x, v)). We introduce the Jacobi equation

J̈(t) +R(ϕt(x, v))J(t) = 0,

where J(t) ∈ N (ϕt(x, v)) and R is the operator introduced in (2.1), with initial conditions
J(0) = wH = wH(0) and D

DtJ(0) = wV = wV(0). We have:

wH(t) = J(t), wV(t) =
D

Dt
J(t).

Using the standard Rauché lemma for matrix ODEs (see [Kni02, Proposition 2.18]), it is easy
to show that the geodesic flow in negative curvature is Anosov [Ano67] (i.e. when the matrix-
valued symmetric operator R ∈ C∞(M,End(N )) satisfies the bounds −α2 ≤ R ≤ −β2 < 0).

Using the identification with N ⊕N one can prove (see [Kni02, pp. 472-473] for instance)
the following: there exists α > 0 and symmetric operators U± ∈ Cα(SM,End(N )) such that
for all (x, v) ∈ SM ,

Es(x, v) ' {(w,U+(x, v)w) | w ∈ N (x, v)} , Eu(x, v) ' {(w,U−(x, v)w) | w ∈ N (x, v)} .

We will write

θ±(x, v) : N (x, v)→ Es/u(x, v), w 7→ θ±(x, v) · w = (w,U±(x, v) · w)

The endomorphisms U± are actually differentiable in the flow direction, bounded onM and
solutions to the Riccatti equation, namely:

XU± + U2
± +R = 0. (2.5)
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The satisfy that U− − U+ > 0 (i.e. it is a symmetric definite positive endomorphism onM).
We now make some further observations on these endomorphisms which will be needed

at some stage (in Lemma 6.7). Consider a point (x, v) ∈ SM and w ∈ N (x, v), and write
Z := (w,U+(x, v)w) ∈ Es(x, v). We can then write, using the Jacobi vector fields, dϕt(Z) =

(J(t), J̇(t)) and since dϕt(Z) belongs to the stable bundle (which is invariant under the flow),
one has

J̇(t) = U+(ϕt(x, v))J(t). (2.6)
We now consider an orthonormal frame (E1(0), ..., En−1(0)) of {v}⊥ and parallel-transport
it along the geodesic t 7→ π(ϕt(x, v)). We can decompose the Jacobi vector fields as J(t) =∑n−1

i=1 yi(t)Ei(t), where yi ∈ C∞(R) are smooth functions. Consider Rn−1 endowed with its
Euclidean structure and denote by (e1, ..., en−1) an orthonormal basis. If we introduce the
identification ρ(t) : Rn−1 → N (ϕt(x, v)), defined by ρ(t)ei := Ei(t), then using that the Ei(t)
are parallel transported, we can rewrite (2.6) as:

Ẏ (t) = U+(t)Y (t),

where Y (t)> = (y1(t), ..., yn−1(t)) ∈ Rn−1 and U+(t) := U+(ϕt(x, v)) is seen as an endomor-
phism of Rn−1. Let Φ(t) be the resolvent of this equation, i.e. such that Y (t) = Φ(t)Y (0)5. In
other words, we have: J(t) = ρ(t)Φ(t)ρ(0)−1J(0). The exponential decay (2.4) then implies
that for all t ≥ 0:

‖Φ(t)‖ ≤ Ce−tλ.
One way of rewriting this is the following:

Lemma 2.1. Consider the propagator RU+(t) : C∞(SM,N )→ C∞(SM,N ) defined by:

ṘU+(t) = (−X + U+)RU+(t), RU+(0) = 1.

Then, there exists C, λ > 0 such that for all t ≥ 0:

‖RU+(t)‖L2(SM,N )→L2(SM,N ) ≤ Ce−λt.

Eventually, let us recall the notion of conjugate points:

Definition 2.2. Let y := π(ϕt(x, v)). We say that x and y are conjugate points if d(ϕt)(x,v)(V)∩
V 6= {0}. We say that (M, g) has no conjugate points if dϕt(V) ∩ V = {0} for all t ∈ R.

The Anosov property has very strong implications on the geometry but we will only use
elementary ones. In particular, it prevents the existence of conjugate points [Kli74, Mn87]. As
the stable and unstable bundles are invariant by the flow, this implies that their intersection
with the vertical bundle is always trivial:

Es ∩ V = Eu ∩ V = {0} .

We introduce C, the set of free homotopy classes on the manifold M ; it is well-known that
this set is in one-to-one correspondance with conjugacy classes of the fundamental group
π1(M). We will use the following:

5Informally, we like to think of it as Φ(t)“ = ” exp
(∫ t

0
U+(ϕs(x, v))ds

)
, just as in the scalar case. Of course,

this is completely wrong for matrices. Nevertheless, in the case of a surface, the endomorphisms U± are simply
functions r± called the Riccatti functions and this is indeed a true equality.
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Lemma 2.3. For each free homotopy class c ∈ C, there exists a unique closed geodesic γg(c) ∈
C.

c

γg0(c)
(M; g0)

Figure 2. In red, the unique closed geodesic of the free homotopy class c ∈ C.

Elements of proofs can be found in the survey of Knieper [Kni02]. In the following, we will
consider geometric inverse problems related to marked quantities which means that we will be
given some data indexed by the set of free homotopy classes.

3. Fourier analysis on the unit tangent bundle

3.1. Symmetric tensors.

3.1.1. Symmetric tensors in a Euclidean vector space. We recall some elementary properties of
symmetric tensors on Riemannian manifolds. The reader is referred to [DS10] for an extensive
discussion. We consider an n-dimensional Euclidean vector space (E, gE) with orthonormal
frame (e1, ..., en). We denote by ⊗mE∗ the m-th tensor power of E∗ and by ⊗mS E∗ the
symmetric tensors of order m, namely the tensors u ∈ ⊗mE∗ satisfying:

u(v1, ..., vm) = u(vσ(1), ..., vσ(m)),

for all v1, ..., vm ∈ E and σ ∈ Sm, the permutation group of {1, ...,m}. If K = (k1, ..., km) ∈
{1, ..., n}m, we define e∗K = e∗k1⊗ ...⊗e∗km , where e

∗
i (ej) := δij . We introduce the symmetriza-

tion operator S : ⊗mE∗ → ⊗mS E∗ defined by:

S(η1 ⊗ ...⊗ ηm) :=
1

m!

∑
σ∈Sm

ησ(1) ⊗ ...⊗ ησ(m),

where η1, ..., ηm ∈ E∗. Given v ∈ E, we define v[ ∈ E∗ by v[(w) := gE(v, w) and call
[ : E → E∗ the musical isomorphism, following the usual terminology. Its inverse is denoted
by ] : E∗ → E. The scalar product gE naturally extends to ⊗mE∗ (and thus to ⊗mS E∗) using
the following formula:

g⊗mE∗(v
[
1 ⊗ ...⊗ v[m, w[1 ⊗ ...⊗ w[m) :=

m∏
j=1

gE(vj , wj),
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where vi, wi ∈ E. In particular, if u =
∑n

i1,...,im=1 ui1...ime
∗
i1
⊗ ... ⊗ e∗im , then ‖u‖

2
⊗mE∗ =∑n

i1,...,im=1 |ui1...im |2. For the sake of simplicity, we will still write gE instead of g⊗mE∗ . The
operator S is an orthogonal projection with respect to this scalar product.

There is a natural trace operator T : ⊗mE∗ → ⊗m−2E∗ (it is formally defined to be 0 for
m = 0, 1) given by:

T u :=

n∑
i=1

u(ei, ei, ·, ..., ·), (3.1)

and it also maps T : ⊗mS E∗ → ⊗
m−2
S E∗. Its adjoint (with respect to the metric g⊗mE∗)

on symmetric tensors is the map J : ⊗mS E∗ → ⊗
m+2
S E∗ given by J u := S(gE ⊗ u). It is

easy to check that the map J is injective. This implies by standard linear algebra that one
has the decomposition, where ⊗mS E∗|0−Tr = ker T ∩ ⊗mS E∗ denotes the trace-free symmetric
m-tensors:

⊗mS E∗ = ⊗mS E∗|0−Tr ⊕⊥ J ⊗m−2
S E∗ = ⊕k≥0J k ⊗m−2k

S E∗|0−Tr. (3.2)

Let SE be the unit sphere of E and define the pullback operator π∗m : ⊗mS E∗ → L2(SE) by
the formula

π∗mf(v) := f(v, ..., v).

We introduce Ωm := ker(∆SE +m(m+ n− 2)) where ∆SE denotes the Laplacian on the unit
sphere of E. The space L2(SE) is endowed with the natural scalar product:

〈u, u′〉L2(SE)

∫
SE
u(v)u′(v)dv,

where dv denotes the Riemannian volume form induced by the metric gE |SE on the sphere.
We will denote by πm∗ the adjoint of π∗m with respect to this scalar product. The following
mapping property is important:

Lemma 3.1. The map
π∗m : ⊗mS E∗|0−Tr → Ωm,

is an isomorphism. More precisely, πm∗π∗m = c(n,m)1, where

c(n,m) =
m!πn/2

2m−1Γ(n/2 +m)
.

In particular, this implies the following graded mapping property:

π∗m : ⊗mS E∗ = ⊕k≥0J k ⊗m−2k
S E∗|0−Tr → ⊕k≥0Ωm−2k.

Proof. First of all, one introduces the space Pm(E) of homogeneous polynomials of degree
m ∈ N on E (i.e. satisfying p(λv) = λmv for all λ > 0) and Hm(E) the set of harmonics
polynomials of degree m i.e. satisfying ∆Ep = 0, where ∆E is the Laplacian on E induced
by gE . For u ∈ ⊗mS E∗, writing λm(u)(v) := u(v, ..., v), it is clear that λm : ⊗mS E∗ → Pm(E).
Moreover, it is immediate that λm : ⊗mS E∗|0−Tr → Hm(E) by using the formula, for u ∈ ⊗mS E∗
(see [DS10, Lemma 2.4] for instance):

m(m− 1)π∗m−2 Tr(u) = ∆Eπ
∗
mu.



GEOMETRIC INVERSE PROBLEMS ON ANOSOV MANIFOLDS 15

Then, introducing the restriction operator rm : Pm(E) → C∞(SE) defined by rm(u) := u|SE
(hence π∗m = rmλm), we see that rm : Hm(E) → Ωm as follows from the following formula
(see [GHL04, Proposition 4.48] for instance):

∆E(u)|SE = ∆SE (u|SE ) +
∂2u

∂r2

∣∣∣∣
SE

+ (n− 1)
∂u

∂r

∣∣∣∣
SE
,

where r is the radial coordinate, using the homogeneity of u. This proves the announced
mapping properties. As to the equality πm∗π∗m = c(n,m)1, it relies on Schur’s lemma and
requires some extra work, especially for the computation of the value of c(n,m) (we refer to
[DS10, Lemma 2.4] for further details). �

3.1.2. Symmetric tensors on a Riemannian manifold. We now consider the Riemannian man-
ifold (M, g) and denote by dµ the Liouville measure on the unit tangent bundle SM . All
the previous definitions naturally extend to the vector bundle TM → M that is for f, f ′ ∈
C∞(M,⊗mT ∗M), we define the L2-scalar product

〈f, f ′〉 =

∫
M
〈fx, f ′x〉xd vol(x),

where 〈·, ·〉x is the scalar product on TxM introduced in the previous paragraph and d vol(x)

is the Riemannian measure induced by g. The map π∗m : C∞(M,⊗mT ∗M)→ C∞(SM) is the
canonical morphism given by π∗mf(x, v) = fx(v, ..., v), whose formal adjoint with respect to
the two L2-inner products (that is to say on L2(SM, dµ) and L2(⊗mT ∗M,d vol)) is πm∗, i.e.

〈π∗mf, h〉L2(SM,dµ) = 〈f, πm∗h〉L2(⊗mT ∗M,d vol).

If ∇ denotes the Levi-Civita connection, we set D := S ◦ ∇ : C∞(M,⊗mT ∗M) →
C∞(M,⊗m+1T ∗M) to be the symmetrized covariant derivative. Its formal adjoint with re-
spect to the L2-scalar product is D∗ = −Tr(∇·) where the trace is taken with respect to the
two first indices, as in the previous paragraph. One has the following well-known relation
between the geodesic vector field X on SM and the operator D:

Lemma 3.2. Xπ∗m = π∗m+1D

Proof. First of all, one observes that π∗m+1D = π∗m+1S∇ = π∗m+1∇ as the antisymmetric part
of the tensor is going to vanish by applying π∗m+1. We fix a point x0 ∈M and consider normal
coordinates centered at x0. In these coordinates, if f = fIdxI , then:

X(x0, v) =

n∑
i=1

vi∂xi , ∇f(x0) =

n∑
i=1

∂xifI(x0)dxi ⊗ dxI

Thus:

(Xπ∗mf)(x0, v) =

n∑
i=1

vi∂xi(fIvI) =

n∑
i=1

(∂xifI)vivI = π∗m+1(∇f)(x0, v)

Since x0 was arbitrary, this completes the proof. �
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The operatorD is a differential operator of order 1 with principal symbol given by σ(D)(x, ξ) :

f 7→ iS(ξ ⊗ f) = ijξf , where jξ is the symmetric multiplication by ξ. Its adjoint has princi-
pal symbol σ(D∗)(x, ξ) : f 7→ −iıξ] , where ξ] denotes the vector naturally associated to the
covector ξ via the metric g and ıξ] is the contraction.

Lemma 3.3. D is elliptic. It is injective on tensors of odd order, and its kernel is reduced to
Rg⊗m/2 on even tensors.

When m is even, we will denote by Km = cmS(g⊗m/2), with cm > 0, a unitary vector in
the kernel of D.

Proof. We fix (x, ξ) ∈ T ∗M . We consider a symmetric tensor f =
∑n

i1,...im=1 fi1...imdxi1⊗ ...⊗
dxim of order m. We then have:

jξf =
1

m+ 1

m+1∑
l=0

n∑
i1,...im=1

fi1...imdxi1 ⊗ ...⊗ dxil−1
⊗ ξ ⊗ dxil+1

⊗ ...⊗ dxim

Thus, separating the case l = 0 and l 6= 0 in the previous sum, we obtain:

ıη]jξf =
1

m+ 1
〈ξ, η]〉f +

m

m+ 1
jξıη]

In particular, for η = ξ, using the non-negativity of the operator jξıξ] , we obtain for f ∈
⊗mS T ∗xM :

|σ(D)(x, ξ)f |2 = 〈ıξ]jξf, f〉 ≥
|ξ|2|f |2

m+ 1
,

i.e. ‖σ(x, ξ)‖ ≥ C|ξ|, so the operator is uniformly elliptic and can be inverted (on the left)
modulo a compact remainder, see Proposition A.5: there exists pseudodifferential operators
Q,R of respective order −1,−∞ such that QD = 1 +R.

We now investigate ker(D): if Df = 0 for some tensor f ∈ C−∞(M,⊗mS T ∗M), then f is
smooth (see Proposition A.5) and π∗m+1Df = Xπ∗mf = 0. By ergodicity of the geodesic flow,
π∗mf = c ∈ Ω0 is constant. If m is odd, then π∗mf(x, v) = −π∗mf(x,−v) so f ≡ 0. If m is even,
then f = Jm/2(um/2) where um/2 ∈ ⊗0

SE
∗ ' R so f = c′σ(g⊗m/2). �

By classical elliptic theory, the ellipticity and injectivity of D imply that for all s ∈ R:

Hs(M,⊗mS T ∗M) = D(Hs+1(M,⊗m−1
S T ∗M))⊕ kerD∗|Hs(M,⊗mS T ∗M), (3.3)

and the decomposition still holds in the smooth category and in the Ck,α-topology for k ∈
N, α ∈ (0, 1). This is the content of the following theorem:

Theorem 3.4 (Tensor decomposition). Let s ∈ R and f ∈ Hs(M,⊗mS T ∗M). Then, there
exists a unique pair of symmetric tensors

(p, h) ∈ Hs+1(M,⊗m−1
S T ∗M)×Hs(M,⊗mS T ∗M),

such that f = Dp+ h and D∗h = 0. Moreover, if m = 2l + 1 is odd, 〈p,K2l〉 = 0.

The proof will be an immediate consequence of the following dicussion. When m is even,
we denote by ΠKm := 〈Km, ·〉Km the orthogonal projection onto ker(D). We define ∆m :=

D∗D + ε(m)ΠKm , where ε(m) = 1 for m even, ε(m) = 0 for m odd. The operator ∆m is an
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elliptic differential operator of order 2 which is invertible: as a consequence, its inverse is also
pseudodifferential of order −2 (see [Shu01, Theorem 8.2]). We can thus define the operator

πkerD∗ := 1−D∆−1
m D∗, (3.4)

so that h = πkerD∗f . One can check that this is indeed exactly the L2-orthogonal projec-
tion on solenoidal tensors, it is a pseudodifferential operator of order 0 (as a composition of
pseudodifferential operators).

Since σ(D)(x, ξ) = ijξ is injective, we know that given (x, ξ) ∈ T ∗M , the space ⊗mS T ∗xM
breaks up as the direct sum

⊗mS T ∗xM = ran
(
iσ(D)(x, ξ)|⊗m−1

S T ∗xM

)
⊕ ker

(
iσ(D∗)(x, ξ)|⊗mS T ∗xM

)
= ran

(
jξ|⊗m−1

S T ∗xM

)
⊕ ker

(
ıξ] |⊗mS T ∗xM

)
We denote by πker ı

ξ]
the projection on ker

(
ıξ] |⊗mS T ∗xM

)
parallel to ran

(
jξ|⊗m−1

S T ∗xM

)
. It is

then straightforward to check that:

Lemma 3.5. The operator πkerD∗ is pseudodifferential of order 0 with principal symbol σπkerD∗ =

πker iξ .

3.2. Fourier analysis in the fibers. For every x ∈M , the unit sphere

SxM =
{
v ∈ TxM | |v|2x = 1

}
⊂ SM

(endowed with the Sasaki metric introduced earlier) is isometric to the canonical sphere
(Sn−1, gcan). Denote by ∆V the vertical Laplacian obtained for f ∈ C∞(SM) as ∆Vf(x, v) =

∆gcan(f |SxM )(v), where ∆gcan is the spherical Laplacian. For m ≥ 0, we denote as in the
previous paragraph

Ωm(x) = ker(∆V(x) +m(m+ n− 2)),

the vector space of spherical harmonics of degree m for the spherical Laplacian ∆V. We will
use the convention that Ωm = {0} if m < 0. If f ∈ C∞(SM), it can then be decomposed
as f =

∑
m≥0 f̂m, where f̂m ∈ C∞(M,Ωm) is the L2-orthogonal projection of f onto the

spherical harmonic of degree m. We will say that f has finite degree if its expansion in
spherical harmonics is finite, and we call degree of f (denoted by deg(f)) the highest degree
of its non vanishing spherical harmonics. The following mapping property is crucial:

Lemma 3.6. The geodesic vector field acts as

X : C∞(M,Ωm)→ C∞(M,Ωm−1)⊕ C∞(M,Ωm+1).

Proof. Consider f ∈ C∞(M,Ωm), fix an arbitrary point x0 ∈M and take normal coordinates
at x0 ∈M . Then X(x0, v) =

∑n
i=1 vi∂xi and thus Xf(x0, v) =

∑n
i=1 vi(∂xif)(x0, v). But it is

clear that ∂xif is still a spherical harmonics of degree m as the operator does not affect the
v-variable and then the lemma boils down to proving that the product of a degree 1 spherical
harmonics with a degree m is the sum of two spherical harmonics of degree m− 1 and m+ 1.
Since this is a well-known fact, we leave that as an exercise for the reader. �
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We define X+ as the L2-orthogonal projection of X on the higher modes Ωm+1, namely
if u ∈ C∞(M,Ωm), then X+u := (X̂u)m+1 and X− as the L2-orthogonal projection of X
on the lower modes Ωm−1. For m ≥ 0, the operator X+ : C∞(M,Ωm) → C∞(M,Ωm+1) is
elliptic and thus has a finite dimensional kernel by Proposition A.5 (see [DS10]). The operator
X− : C∞(M,Ωm)→ C∞(M,Ωm−1) is of divergence type. It can be checked that X∗+ = −X−:
this is a direct consequence of the fact that X is formally skew-adjoint on L2(SM) as it
preserves the Liouville measure. It is worth introducing the following terminology as these
elements will play an important role in the following:

Definition 3.7. Elements in the kernel of X+ are called Conformal Killing Tensors (CKTs),
associated to the trivial line bundle.

For m = 0, the kernel of X+ on C∞(M,Ω0) always contains the constant functions. We call
non trivial CKTs elements in kerX+ which are not constant functions on SM . The kernel of
X+ is invariant by changing the metric by a conformal factor (see [GPSU16, Section 3.6]).

As mentioned in Lemma 3.1, there is a one-to-one correspondance between trace-free sym-
metric tensors of degree m and spherical harmonics of degree m, namely the map

π∗m : C∞(M,⊗mS T ∗M |0−Tr)→ C∞(M,Ωm)

is (up to a constant) an isometry (see Lemma 3.1). We now introduce the (pointwise in x ∈M)
orthogonal projection P : ⊗mS T ∗xM → ⊗mS T ∗xM |0−Tr onto trace-free symmetric tensors. We
have the following identification of PD with X+ and D∗ with X−:

X+π
∗
m = π∗m+1PD, X−π

∗
m = − m

n+ 2(m− 2)
π∗m−1D

∗ (3.5)

The following decay property will be needed:

Lemma 3.8. Let u ∈ C∞(SM, π∗E) and write u =
∑

m≥0 ûm, where ûm ∈ C∞(M,Ωm ⊗ E).
Then there exists β > 0 such that, for any even α ∈ N, there exists a constant Cα > 0 such
that:

sup
x∈M
‖ûm(x, ·)‖L2(SxM) ≤

Cα‖u‖Cα(SM,π∗E)

mα−β

Proof. Fix a point p ∈M , consider (e1, ..., er) a local orthonormal basis of E around p. We can
write u(x, v) =

∑r
k=1 uk(x, v)⊗ ek(x), where uk ∈ C∞(SM) and each uk can be decomposed

into Fourier modes uk =
∑

m≥0(ûk)m where (ûk)m ∈ C∞(M,Ωm). We then have

(û)m(x, v) =

r∑
k=1

(ûk)m(x, v)ek(x).

Then:

‖(û)m(x, ·)‖2L2(SxM) =

∫
SxM

r∑
k=1

|(ûk)m(x, v)|2dv =
r∑

k=1

‖(ûk)m(x, ·)‖2L2(SxM),

so the lemma actually boils down to the trivial case E = C i.e. it suffices to show

‖f̂m(x, ·)‖2L2(SxM) ≤
Cα‖f‖2Cα(SM)

mα−β ,
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for any smooth function f ∈ C∞(SM).
We fix a point x ∈M is fixed in a neighborhood of p. We identify SxM ' Sn−1. We write

f =
∑

m≥0 f̂m, where f̂m ∈ Ωm(x). Let ω1, ..., ωj(m) be an L2-orthonormal basis of spherical
harmonics of degree m, i.e. for all i = 1, ..., j(m), we have:

−∆Vωi = λmωi,

where λm = m(m+ n− 2). Note that we have

j(m) =

(
n− 1 +m

m

)
−
(
n+m− 3

m− 2

)
,

and the important observation is that j(m) . mβ , for some exponent β > 0. Indeed,

j(m+ 1) =
n+m

m+ 1

(
n− 1 +m

m

)
− n+m− 2

m− 1

(
n+m− 3

m− 2

)
≤ n+m

m+ 1
j(m),

and the bound follows easily.
We can further decompose

f̂m =

j(m)∑
i=1

αiωi,

where αi = 〈f, ωi〉L2(Sn−1). This implies that for any α ∈ N:

|αi| =
|〈−∆α

Vf, ωi〉L2 |
λαm

≤
‖∆α

Vf(x, ·)‖L∞(SxM)‖ωi‖L2

λαm
≤ C
‖f‖C2α(SM)

m2α
,

where C only depends on the dimension and some potential choices made in the definition of
C2α(SM). Hence:

‖f̂m‖2L2(SxM) =

j(m)∑
i=1

|αi|2 . j(m)‖f‖2C2α(SM)m
−4α . mβ−4α‖f‖2C2α(SM).

This proves the claim. �

In particular, it will be convenient to have the following result at hand:

Lemma 3.9. For u =
∑

m≥0 ûm ∈ C∞(SM), one has:

‖X+ûm(x, ·)‖L2(SxM) .
‖u‖Cα+1

mα−β .

Proof. This is a straightforward consequence of the previous Lemma as X+u is smooth if u is
smooth. �

3.3. Twisted Fourier analysis in the fibers. Consider (E ,∇E) a Hermitian vector bundle
of rank r equipped with a unitary connection over the smooth Riemannian n-manifold (M, g)

with n ≥ 2. Let SM be the unit sphere bundle and π : SM → M be the projection. We
consider the pullback bundle (π∗E , π∗∇E) over SM . The geodesic vector field X induces
the operator X := (π∗∇E)X , acting on sections of C∞(SM, π∗E). As before, by standard
Fourier analysis in the sphere fibers, we can write f ∈ C∞(SM, E) as f =

∑
m≥0 fm, where

fm ∈ C∞(M,Ωm ⊗ E) and pointwise in x ∈M :

Ωm(x)⊗ E(x) := ker(∆EV +m(m+ n− 2)),
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is the kernel of the vertical Laplacian ∆EV. Note that this Laplacian is independent of the
connection ∇E , it only depends on E and g, as can be seen from the expression

∆EV(
r∑

k=1

fkek) =
r∑

k=1

(∆Vfk)ek,

if (e1, ..., er) denotes a local orthonormal basis of E around a point x0 (the ei’s are only x-
dependent). Elements in this kernel are called the twisted spherical harmonics of degree m.
As in the non-twisted case, we will say that f ∈ C∞(SM, E) has finite Fourier content if its
expansion in spherical harmonics only contains a finite number of terms and we denote by
deg(f) its degree. It is easy to check that the operator X still maps

X : C∞(M,Ωm ⊗ E)→ C∞(M,Ωm−1 ⊗ E)⊕ C∞(M,Ωm+1 ⊗ E) (3.6)

and can thus be decomposed as X = X+ + X−, where, if u ∈ C∞(M,Ωm ⊗ E), X+u ∈
C∞(M,Ωm+1 ⊗ E) denotes the orthogonal projection on the twisted spherical harmonics of
degree m+ 1. The operator X+ is elliptic and thus has finite-dimensional kernel whereas X−
is of divergence type. Moreover, X∗+ = −X−, where the adjoint is computed with respect to
the canonical L2 scalar product on SM induced by the Sasaki metric.

Definition 3.10. We call twisted Conformal Killing Tensors (CKTs) elements in the kernel
of X+|C∞(M,Ωm⊗E).

The twisted CKTs are always invariant by conformal change of the metric (see [GPSU16,
]). We say that the twisted CKTs are trivial when the kernel is reduced to {0} and this is
known to be a generic property of connections:

Theorem 3.11 (Cekic-L. ’20). The set of unitary connections without CKTs is residual6.

We now explain the link with (twisted) symmetric tensors. Given a section u ∈ C∞(M,⊗mS T ∗M⊗
E), the connection ∇E produces an element ∇Eu ∈ C∞(M,T ∗M ⊗ (⊗mS T ∗M)⊗ E). In coor-
dinates, if (e1, ..., er) is a local orthonormal frame for E and ∇E = d + Γ, for some one-form
with values in skew-hermitian matrices Γ, we have:

∇E(
r∑

k=1

uk ⊗ ek) =
r∑

k=1

∇uk ⊗ ek + uk ⊗∇Eek

=
r∑

k=1

(
∇uk +

r∑
l=1

n∑
i=1

Γkilul ⊗ dxi

)
⊗ ek,

(3.7)

where uk ∈ C∞(M,⊗mS T ∗M) and ∇ is the Levi-Civita connection. The symmetrization
operator SE : C∞(M,⊗mT ∗M ⊗ E)→ C∞(M,⊗mS T ∗M ⊗ E) is defined by:

SE

(
r∑

k=1

uk ⊗ ek

)
=

r∑
k=1

S(uk)⊗ ek,

6In the sense that for all k ≥ 2, this set is an intersection of dense open subsets of connections with regularity
Ck.
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where uk ∈ C∞(M,⊗mS T ∗M) and S is the symmetrization operators of tensors previously in-
troduced. We can symmetrize (3.7) to produce an elementDE := SE∇Eu ∈ C∞(M,⊗m+1

S T ∗M⊗
E) given in coordinates by:

DE

(
r∑

k=1

uk ⊗ ek

)
=

r∑
k=1

(
Duk +

r∑
l=1

n∑
i=1

ΓkilS(ul ⊗ dxi)

)
⊗ ek, (3.8)

where D = S∇ (∇ being the Levi-Civita connection) is the usual symmetric derivative of
symmetric tensors introduced in the previous paragraph. The operator DE is a first order
differential operator and the expression of its principal symbol

σprinc(DE) ∈ C∞(T ∗M,Hom(⊗mS T ∗M ⊗ E ,⊗m+1
S T ∗M ⊗ E))

can be read off from (3.8), namely σprinc(DE) = σprinc(D)⊗ idE :

σprinc(DE)(x, ξ) ·

(
r∑

k=1

uk(x)⊗ ek(x)

)
=

r∑
k=1

(σprinc(D)(x, ξ) · uk(x))⊗ ek(x)

= i
r∑

k=1

S(ξ ⊗ uk(x))⊗ ek(x),

where ek(x) ∈ Ex, uk(x) ∈ ⊗mS T ∗xM and the basis (e1(x), ..., er(x)) is assumed to be orthonor-
mal. As a consequence, it is an injective map and DE acting on twisted symmetric tensors
of order m is a left-elliptic operator and can be inverted on the left modulo a smoothing re-
mainder; its kernel is finite-dimensional (see Proposition A.5) and consists of elements called
twisted Killing Tensors. We also record the same relation as in Lemma 3.2.

Lemma 3.12. π∗m+1DE = Xπ∗m

The adjoint

D∗E : C∞(M,⊗m+1
S T ∗M ⊗ E)→ C∞(M,⊗mS T ∗M ⊗ E)

has a surjective principal symbol given by σD∗E (x, ξ) = −iıξ] ⊗ idE . As before, there is an
explicit link between X−/D

∗
E and X+/DE . We have the following equalities (see [GPSU16, p.

22]) on C∞(M,⊗mS T ∗M |0−Tr ⊗ E):

X+π
∗
m = π∗m+1PDE , X−π

∗
m = − m

n− 2 + 2m
π∗m−1D

∗
E . (3.9)

4. Microlocal framework

Throughout this section, we consider the case of a smooth closed manifold M endowed
with an Anosov vector field X preserving a smooth measure dµ and generating a flow (ϕt)t∈R.
Here, Anosov is understood in the sense of (2.4). (It will be applied withM = SM and the
geodesic vector field X.)
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4.1. Rough description of the L2-spectrum. In this paragraph, we study the L2-spectrum
of the operator X and show the need to introduce other functional spaces in order to obtain
a good spectral theory. Since X preserves the smooth measure dµ, it is skew-adjoint on
L2(SM, dµ), with dense domain

DL2 :=
{
u ∈ L2(M, dµ) | Xu ∈ L2(M, dµ)

}
.

Equivalently, −iX is self-adjoint. As we will see, its L2-spectrum consists of absolutely con-
tinuous spectrum on R and of embedded eigenvalues. We first prove that the L2-spectrum of
iX is R.

Lemma 4.1. σL2(iX) = R

The proof actually works for more general operators like ∇EX , where ∇E is a unitary con-
nection on a Hermitian vector bundle E →M. The proof we give is that of Guillemin [Gui77,
Lemma 3], following Helton.

Proof. We argue by contradiction. Assume σ(−iX) 6= R, then since σ(−iX) is closed, there
exists an interval I of R such that I∩σ(−iX) = ∅. Let f ∈ C∞comp(I), f 6= 0. Then f(−iX) = 0

and this operator is given by7

f(−iX) =

∫ +∞

−∞
f̂(t)etXdt

Given a ∈ C∞(M), f(−iX)a is continuous. Moreover, it is given at x0 ∈M by:

f(−iX)a(x0) =

∫ +∞

−∞
f̂(t)a(ϕtx0)dt

We now consider g, a smooth function on R with compact support and a constant A > 0. If
x0 ∈ M is not periodic, then we can construct a ∈ C∞(M), h ∈ C∞(R) such that a(ϕtx0) =

g(t) + h(t) for all t ∈ R, where ‖h‖∞ ≤ ‖g‖∞ and supp(h)∩ [−A,A] = ∅ (define a by a(ϕtx0)

on a sufficiently large segment of the orbit of x0 and then extend to a sufficiently small tubular
neighborhood in order to obtain a smooth function). Then:

f(−iX)a(x0) = 0 =

∫ +∞

−∞
f̂(t)g(t)dt+

∫ +∞

−∞
f̂(t)h(t)dt

As A → +∞, the second integral converges to 0 since f̂ is Schwartz. We thus obtain that∫ +∞
−∞ f̂(t)g(t)dt = 0 for any smooth function g with compact support, thus f̂ ≡ 0 and f ≡

0. �

The goal of this Section is to go beyond the L2-spectrum and to reveal resonances which
are true eigenvalues in the half-space {<(z) ≤ 0}. This is the content of the Pollicott-Ruelle
theory.

7Formally, this follows from the following computation, where dP (λ) is the spectral measure of −iX:

f(−iX) =

∫ +∞

−∞
f(λ)dP (λ) =

∫ +∞

−∞

∫ +∞

−∞
eiλtf̂(t)dP (λ)dt =

∫ +∞

−∞
f̂(t)etXdt

The justification of the permutation is not difficult since f has compact support.
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4.2. Pollicott-Ruelle resonances.

4.2.1. Description of the resonances. As it is harmless, we can consider a more general case
than in the previous paragraph. We assume that E → M is a Hermitian vector bundle over
M. Let ∇E be a unitary connection on E and set X := ∇EX . Since X preserves dµ and ∇E is
unitary, the operator X is skew-adjoint on L2(SM, E ; dµ), with dense domain

DL2 :=
{
u ∈ L2(M, E ; dµ) | Xu ∈ L2(M, E ; dµ)

}
. (4.1)

As we will see, L2-spectrum consists of absolutely continuous spectrum on iR and of embedded
eigenvalues. We introduce e−tX, the propagator of X, namely the parallel transport by ∇E
along the flowlines of X. Recall that for x ∈ M, t ∈ R, C(x, t) : Ex → Eϕt(x) denotes the
parallel transport (with respect to the connection ∇E) along the flowline (ϕs(x))s∈[0,t]. If
f ∈ C∞(M, E), then (e−tXf)(x) = C(ϕ−t(x), t)(f(ϕ−t(x)). If X = X is simply the vector
field acting on functions (i.e. E is the trivial line bundle), then e−tXf = f(ϕ−t(·)) is nothing
but the composition with the flow.

We introduce the resolvents

R+(z) := (−X− z)−1 = −
∫ +∞

0
e−tze−tXdt,

R−(z) := (X− z)−1 = −
∫ 0

−∞
ezte−tXdt,

(4.2)

initially defined for <(z) > 0 since

‖R+(z)‖L2→L2 ≤
∫ +∞

0
e−<(z)t‖e−tX‖L2 →L2dt ≤

∫ +∞

0
e−<(z)tdt = <(z)−1.

(Let us stress on the conventions here: −X is associated to the positive resolvent R+(z)

whereas X is associated to the negative one R−(z).) We are going to show that the resolvents
can be meromorphically extended to the whole complex plane by makingX act one anisotropic
Sobolev spaces Hs±, that is we can beyond the L2-spectrum axis.

Theorem 4.2 (Faure-Sjöstrand ’11). There exists a constant c > 0 such that for any s > 0,
there exists a Hilbert space Hs+, such that on the half-space {<(z) > −cs},

(−X− z)−1 : DHs+ → H
s
+

is a meromorphic family of unbounded operators with domain DHs+ =
{
u ∈ Hs+,Xu ∈ Hs+

}
which are Fredholm of index 0.

The poles of the resolvents are called the Pollicott-Ruelle resonances and have been widely
studied in the aforementioned literature [Liv04, GL06, BL07, FRS08, FS11, FT13, DZ16].
These resonances (and the resonant states associated to them) are intrinsic to the flow and
do not depend on any choice of construction of the anisotropic Sobolev spaces. They carry
important dynamical information on the flow. In particular, it can be shown in the simplest
case where E = C and X = X is the geodesic vector field acting on functions, that there is a
single pole on the imaginary axis at 0 and this is actually equivalent to the fact that the flow
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is mixing, i.e. given f1,2 ∈ C∞(SM) with 0-average (with respect to the Liouville measure
dµ): ∫

SM
f1(ϕt(x, v))f2(x, v)dµ(x, v)→t→0 0. (4.3)

This will be proved in Lemma 4.10. It can even be shown that for contact Anosov flows, there
exists a spectral gap, namely a small resonance-free strip on the left of the imaginary axis
and this implies that the flow is actually exponentially mixing (with respect to the Liouville
measure dµ) i.e. the converge to 0 in (4.3) is exponentially fast, see [Liv04, FT13, NZ15, GC20].
Such a behaviour for a dynamical system is a prototype of a chaotic behaviour.

<(z)

=(z)

0�cs

Figure 3. Resonances of the operator X acting on functions. It can be shown that these
are symmetric with respect to the real axis, see [FS11].

We introduce the dual decomposition

T ∗M = RE∗0 ⊕ E∗s ⊕ E∗u,

where E∗0(Es ⊕ Eu) = 0, E∗s (Es ⊕ RX) = 0, E∗u(Eu ⊕ RX) = 0. As indicated before, we
will show that there exists a constant c > 0 such that R±(z) ∈ L(Hs±) are meromorphic in
{<(z) > −cs}. For R+(z) (resp. R−(z)), the space Hs+ (resp. Hs−) consists of distributions
which are microlocally Hs in a neighborhood of E∗s (resp. H−s in a neighborhood of E∗s )
and microlocally H−s in a neighborhood of E∗u (resp. Hs in a neighborhood of E∗u), see
[FS11, DZ16]. These spaces also satisfy (Hs+)′ = Hs− (where one identifies the spaces using
the L2-pairing). These resolvents satisfy the following equalities on Hs±, for z not a resonance:

R±(z)(∓X− z) = (∓X− z)−1 R±(z) = 1E (4.4)

Given z ∈ C, not a resonance, we have:

R+(z)∗ = R−(z),
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where this is understood in the following way: given f1, f2 ∈ C∞(M, E), we have

〈R+(z)f1, f2〉L2 = 〈f1,R−(z)f2〉L2 .

(We will always use this convention for the definition of the adjoint.) Since the operators
are skew-adjoint on L2, all the resonances (for both the positive and the negative resolvents
R±) are contained in {<(z) ≤ 0}, see [Gui17a, Lemma 2.5] for instance. A point z0 ∈ C is a
resonance for −X (resp. X) i.e. is a pole of z 7→ R+(z) (resp. R−(z)) if and only if there
exists a non-zero u ∈ Hs+ (resp. Hs−) for some s > 0 such that −Xu = z0u (resp. Xu = z0u).
If γ is a small counter clock-wise oriented circle around z0, then the spectral projector onto
the resonant states is

Π±z0 = − 1

2πi

∫
γ
R±(z)dz =

1

2πi

∫
γ
(z ±X)−1dz,

where we use the abuse of notation that −(X + z)−1 (resp. (X − z)−1) to denote the mero-
morphic extension of R+(z) (resp. R−(z)).

The fact that resonances are independent of the construction of the anisotropic Sobolev
space can also be seen from the following caracterization lemma. Here D′E∗s,u denotes the
space of distributions with wavefront set contained in E∗s,u.

Lemma 4.3. A complex number z0 ∈ C is a pole of the meromorphic extension of z 7→
(−X− z)−1 from {<(z) > 0} to C if and only if there exists a distribution u ∈ D′E∗u such that
(−X− z0)u = 0.

We leave the proof as an exercise for the reader.

4.2.2. Proof of Theorem 4.2. We will consider the simple case where E = C i.e. there is now
twist, as this does not make a real difference. We denote by H the Hamiltonian vector field on
the symplectic manifold T ∗M induced by the Hamiltonian σP (x, ξ) = 〈ξ,X(x)〉 (the principal
symbol of P := 1

iX) and by (Φt)t∈R the symplectic flow generated. A quick computation
shows that Φt = (ϕt, dϕ

−>
t ) and the dual spaces E∗s,u previously introduced play a similar role

as Es,u in the Anosov definition (2.4), namely:

|Φt(x, ξ)| ≤ Ce−λt|ξ|, ∀t ≥ 0, ξ ∈ E∗s ,
|Φt(x, ξ)| ≤ Ce−λ|t||ξ|,∀t ≤ 0, ξ ∈ E∗u.

Alors note that since (Φt)t∈R is 1-homogeneous in the ξ variable, it induces a flow (Φ
(1)
t )t∈R

on the unit sphere S∗M. If κ : T ∗M→ S∗M denotes the canonical projection, then κ(E∗s )

is a hyperbolic repeller/source and κ(E∗u) is a hyperbolic attractor/sink for the dynamics of
(Φ

(1)
t )t∈R (see Figure 4). The following lemma asserts the existence of an escape function

which is a crucial tool in the proof of the meromorphic extension of the resolvent (−X− z)−1.

Lemma 4.4 (Faure-Sjöstrand). There exists a 0-homogenous order function m ∈ C∞(T ∗M\
{0} , [−1, 1]) such that H ·m ≤ 0, m ≡ 1 in a conic neighborhood of E∗s , m ≡ −1 in a conic
neighborhood of E∗u and there exists an escape function Gm ∈ S0

ρ,1−ρ(T
∗M), for all ρ < 1,

constructed from m, such that:
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E
∗

0

E
∗

s

m = −1
E

∗

u

m = 1

Figure 4. The projective flow induced by H on the unit cosphere S∗M.

• There exist constants C1, R > 0 such that on |ξ| ≥ R intersected with a conic neigh-
borhood of Σ := E∗s ⊕ E∗u, one has H ·Gm ≤ −C1 < 0.
• For |ξ| ≥ R, H ·Gm ≤ C2 for some constant C2 > 0.

An important remark is that Gm ∈ S0
ρ,1−ρ and eGm ∈ Smρ,1−ρ for any ρ < 1 (these are

the anisotropic classes introduced in Appendix A) and we will sometimes write this as Sm+.
In other words, Gm narrowly misses the usual class S0

1,0. This will not be a problem when
working in Sobolev regularity (that is when working with spaces from from L2) but may (and
actually will) induce complications when using other spaces like Hölder-Zygmund spaces. More
precisely, eGm satisfies the following symbolic estimates in coordinates:

∀(x, ξ) ∈ T ∗M, |∂αξ ∂βxeGm(x, ξ)| ≤ Cα,β(log〈ξ〉)|α|+|β|〈ξ〉m(x,ξ)−|α|,

where α, β ∈ Nn+1.
The anisotropic Sobolev spaces are then defined thanks to the operator As := Op(esGm) ∈

Ψsm+
h (M) by:

Hs+(M) := A−1
s (L2(M)), (Hs+)′ := Hs−(M) = As(L

2(M)) (4.5)

They satisfy some elementary but important properties such that C∞(M) is dense in Hs+(M)

and that Hs+(M) is stable by multiplication by smooth functions. We can now go for the
proof of Theorem 4.2:

Proof of Theorem 4.2. The computation rules of symbols in anisotropic classes enjoy the same
properties (composition rules, ellipticity, etc.) as symbols in the usual classes (see [FRS08]).
We leave it as an exercise to the reader to check that all the symbols and pseudodifferential
operators are in the right anisotropic classes.

We consider a cutoff function χ ∈ C∞c ([0,+∞)) such that χ ≡ 1 on [0, 1/2] and χ ≡ 0

outside [0, 1]. We then define for T > 0 the function χT (t) := χ(t/T ). We have:

(X + λ)

∫ +∞

0
χT (t)e−t(X+λ)dt = 1 +

∫ +∞

0
χ′T (t)e−t(X+λ)dt

Note that the integral on the right-hand side is actually performed for t ∈ [0, T ], that is on
a finite time interval, as will be all the integrals in the following. Let P := Op(p), where
p ∈ S0(T ∗M) and p ≡ 1 in a conic neighborhood of Σ := E∗s ⊕ E∗u and p ≡ 0 outside this
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conic neighborhood. We define As := Op(esGm) ∈ Ψsm+
h (M), where s > 0 is some fixed

number. Up to a lower order modification, we can assume that As is invertible. We introduce
H + λ := As(X + λ)As

−1. Then:

(H + λ)As

∫ +∞

0
χT (t)e−t(X+λ)As

−1dt︸ ︷︷ ︸
:=Q(λ)

= 1 +As

∫ +∞

0
χ′T (t)e−t(X+λ)dtAs

−1︸ ︷︷ ︸
:=R(λ)

(4.6)

Note that ‖R(λ)‖L(L2,L2) = O(〈<(λ)〉−∞) for <(λ)� 0. In particular, for <(λ)� 0, 1+R(λ)

is invertible on L2.
Then, we write:

R(λ) = As

∫ +∞

0
χ′T (t)e−t(X+λ)dtPAs

−1 +As

∫ +∞

0
χ′T (t)e−t(X+λ)dt(1− P )As

−1 (4.7)

By elementary wavefront set arguments (see Example A.18) we have that∫ +∞

0
χ′T (t)e−t(X+λ)dt(1− P ) ∈ Ψ−∞

As a consequence

C 3 λ 7→ As

∫ +∞

0
χ′T (t)e−t(X+λ)dt(1− P )As

−1 ∈ Ψ−∞

is a holomorphic family of compact operators on L2. Then, we deal with the first term in
(4.7). First, notice that by Egorov’s Theorem (see Lemma A.7 or [Zwo12, Theorem 11.1] for
further details)

etXAse
−tX = etX Op(esGm)e−tX = Op(esGm◦Φt) +Kt,

where esGm◦Φt ∈ Ssm◦Φt+ and thus

Op(esGm◦Φt) ∈ Ψsm◦Φt+, Kt ∈ Ψsm◦Φt−1+

Thus:

As

∫ +∞

0
χ′T (t)e−t(X+λ)dtPAs

−1 =

∫ +∞

0
χ′T (t)e−tλAse

−tXPAs
−1dt

=

∫ +∞

0
χ′T (t)e−tλe−tXetXAse

−tXPAs
−1dt

=

∫ +∞

0
χ′T (t)e−tλe−tX

(
Op(es(Gm◦Φt−Gm)p) +K ′tPAs

−1
)

dt

But on the support of p, we have H ·m ≤ 0, so

eGm◦Φt−Gmp ∈ Sm◦Φt−mρ,1−ρ ⊂ S0
ρ,1−ρ,

for all ρ < 1. Thus Op(es(Gm◦Φt−Gm)p) ∈ Ψ0
ρ,1−ρ(M) for all ρ < 1 and this is bounded on L2.

Moreover, K ′tPAs
−1 ∈ Ψ−1+(M) and is thus compact on L2. Since e−tX is bounded on L2,

we deduce that ∫ +∞

0
χ′(t)e−tλe−tXK ′tPAs

−1dt
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is compact on L2. We now need to study the norm of the operator in Ψ0
ρ,1−ρ. Let q ∈

C∞(T ∗M) be a smooth cutoff function such that q(x, ξ) ≡ 0 for |ξ| ≤ R and q(x, ξ) = 1 for
|ξ| ≥ R+ 1. We write

Op(es(Gm◦Φt−Gm)p) = Op(es(Gm◦Φt−Gm)pq) + Op(es(Gm◦Φt−Gm)p(1− q))

The last operator is in Ψ−∞ and is thus compact on L2. We are left with the operator
Op(es(Gm◦Φt−Gm)pq). Note that

lim sup
|ξ| →∞

es(Gm◦Φt(x,ξ)−Gm(x,ξ))pq(x, ξ) ≤ e−C1sT/2,

since H · Gm ≤ −C1 < 0 on the support of pq. By the Calderon-Vaillancourt Theorem (see
[Shu01, Theorem 6.4] for instance), for t ∈ [0, T ], we can write Op(es(Gm◦Φt−Gm)pq) = At+Lt,
where At ∈ Ψ0

ρ,1−ρ, Lt ∈ Ψ−∞ and ‖At‖L(L2,L2) ≤ e−C1st/2. Since the operator Lt contributes
to a compact operator in (4.6), we can forget it.

In (4.6), we thus obtain that

1 +R(λ) = 1 +B(λ) +K(λ),

with K(λ) holomorphic (on C) family of compact operators on L2 and using ‖e−tX‖L(L2,L2) ≤
C0e

ωt:

‖B(λ)‖L(L2,L2) = ‖
∫ T

0
χ′T (t)e−tλe−tXAtdt‖L(L2,L2)

≤ C0

∫ T

0
|χ′T (t)|e−t<(λ)e−C1st/2eωtdt

≤ C0‖χ′‖L∞
T

∫ T

0
e−(C1s/2+<(λ)−ω)tdt ≤ C0‖χ′‖L∞

T (C1s/2 + <(λ)− ω)

(4.8)

This can be made smaller than 1 for some well-chosen constants. Indeed, choose T > 0 large
enough so that C0‖χ′‖L∞/T < C1s/8. Then, for <(λ) > ω − C1s/4, one obtains:

‖χ′‖L∞
T (C1s/2 + <(λ)− ω)

<
‖χ′‖L∞
TC1s/4

< 1/2

Therefore, by (4.8), ‖B(λ)‖L(L2,L2) < 1. In fine, we obtain that 1 + B(λ) is invertible by
Neumann series and thus in (4.6), we obtain that 1+B(λ) +K(λ) is a holomorphic family of
Fredholm operators on <(λ) > ω − cs (where c := C1/4) with index 0. We then conclude by
the analytic Fredholm Theorem. The space we are looking for is Hs+(M) := A−1

s (L2(M)). �

4.3. Description of the L2-spectrum. In this paragraph, we complete the description of
the L2-spectrum for the operator X initiated in §4.1, using Theorem 4.2.

4.3.1. Spectral measure. First of all, we need the:

Lemma 4.5. The poles of the resolvent on iR are of rank 1.

Proof. This is a mere consequence of skew-adjointness of the operator X which implies that
‖R+(z)‖L2 →L2 ≤ 1/<(z), as we saw. �
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However, the residudes (which are spectral projectors onto the resonant states) may have
an arbitrary multiplicity. We can now complete the description of the L2-spectrum:

Lemma 4.6. We have:
(1) σL2(iX) consists of absolutely continuous spectrum and pure point spectrum,
(2) λ0 is in the pure point spectrum of iX if and only if iλ0 is a pole of the resolvent,
(3) σac(iX) = R. Moreover, the absolutely continuous spectral measure is given by

dP (λ) = − 1

2π
(R+(−iλ) + R−(iλ)).

Proof. Fix λ0 ∈ R and assume that iλ0 is not a resonance for −X, that is R+(iλ0) is well-
defined. Then, so is R−(−iλ0) = R+(iλ0)∗. Then, Stone’s formula gives that for δ > 0 small
enough:

1

2
(1[λ0−δ,λ0+δ](iX) + 1(λ0−δ,λ0+δ)(iX)) = lim

ε→0

1

2πi

∫ λ0+δ

λ0−δ

(
(iX− (λ+ iε))−1 − (iX− (λ− iε))−1

)
dλ

= lim
ε→0

1

2π

∫ λ0+δ

λ0−δ
(−R−(−iλ+ ε)−R+(iλ+ ε)) dλ

= − 1

2π

∫ λ0+δ

λ0−δ
(R−(−iλ) + R+(iλ)) dλ,

(4.9)

where the convergence is in the weak sense8, that is by applying the expression to f1 ∈ C∞(M)

and testing against f2 ∈ C∞(M) — the permutation of the limit and the integral being
guaranteed by the holomorphy of the integrand. Taking the limit δ → 0 in (4.9), we see that
the right-hand side converges to 0. Hence λ0 cannot be in the pure point spectrum, otherwise
the left-hand side would converge to ΠL2

λ0
.

Now, assume that iλ0 is a resonance for −X (that is there exists a distribution u ∈ D′E∗u
such that (−X− iλ0)u = 0) and write, for z near iλ0:

R+(z) = Rhol
+ (z)−

Π+
iλ0

z − iλ0
,

where Rhol
+ (z) is holomorphic in z. (Note that the resolvent has this form as the poles are

of order 1, see Lemma 4.5.) Inserting this into Stone’s formula (4.9), we then obtain (in the
weak sense):

lim
δ→0

1

2
(1[λ0−δ,λ0+δ](iX) + 1(λ0−δ,λ0+δ)(iX)) = ΠL2

λ0
=

Π+
iλ0

+ (Π+
iλ0

)∗

2
,

that is λ0 is in the pure point spectrum.
Formula (4.9) also allows to show that there is no singular continuous spectrum, as the

spectral measure is given by

dP (λ) = − 1

2π
(R+(−iλ) + R−(iλ))dλ

8The limit in Stone’s formula is in the strong sense but we here want to inverse limit and integration.
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orthogonally to the L2-eigenstates associated to the discrete pure point spectrum. Eventually,
since σ(−iX) = R and the only discrete eigenvalue is 0 and the absolutely continuous spectrum
is closed, σac(−iX) = R. �

It turns out that one can even prove the following remarkable property:

Lemma 4.7. Resonant states associated to resonances on iR are smooth. In other words, if
(−X− iλ0)u = 0 and u ∈ D′E∗s,u, then u is smooth.

We refer to [DZ17, Lemma 2.3] for a proof. This can be obtained as a consequence of radial
source/sink estimates (with some extra work, though), see [DZ16] for instance. As this is a
bit out of scope of the present survey, we do not detail these estimates. This has the following
consequence:

Lemma 4.8. The L2-eigenstates corresponding to the pure point spectrum are smooth. In
other words, if (−X− iλ0)u = 0 and u ∈ L2(M, E), then u ∈ C∞(M, E).

Proof. We know by the proof of Lemma 4.6 that

ΠL2
λ0

=
1

2
(Π+

iλ0
+ (Π+

iλ0
)∗),

where (Π+
iλ0

)∗ = Π−−iλ0 . These projectors take value in C∞(M, E) and therefore so does
ΠL2
λ0
. �

4.3.2. Dynamical properties of the flow and resonances. We now go back more specifically to
the spectral theory of the vector field X:

Lemma 4.9. Assume X generates an Anosov flow preserving the smooth volume dµ. Then
it is ergodic.

First of all, observe that the constant function 1 is always a resonant state at 0.

Proof. As X preserves a smooth measure, the previous paragraph applies. By definition, the
flow is ergodic with respect to dµ if and only if for u ∈ L2(M,dµ), Xu = 0 implies that u
is constant. Now, if Xu = 0, and u is in L2, then u is smooth (by Lemma 4.8) and it is a
resonant state at 0. It is then immediate that u is constant. �

Recall that a flow is said to be mixing (with respect to the probability measure dµ) if, given
f1, f2 ∈ C∞(M), one has:

Ct(f1, f2) :=

∫
SM

f1(ϕt(x, v))f2(x, v)dµ(x, v)−
∫
M
f1dµ×

∫
M
f2dµ→t→0 0.

Lemma 4.10. The flow is mixing if and only if 0 is the only resonance on the real axis.
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Proof. We fix ε > 0. If the flow is mixing, there exists a time Tε such that for all T >

Tε, |Ct(f1, f2)| < ε. Moreover, for <(λ) > 0, using the integral formula (4.2):

−λ〈R+(λ)f1, f2〉 =

∫ Tε

0
λe−λt〈f1 ◦ ϕ−t, f2〉L2(M)︸ ︷︷ ︸
≤(1−e−λTε )‖f1‖L2‖f2‖L2

dt+

∫ +∞

Tε

λe−λt〈f1,1〉〈f2,1〉dt︸ ︷︷ ︸
=e−λTε 〈f1,1〉〈f2,1〉

+

∫ +∞

Tε

λe−λtCt(f1, f2)dt︸ ︷︷ ︸
≤εe−λTε

As λ→ 0, we obtain that

lim
λ→0+

λ〈R+(λ)f1, f2〉 = 〈f1,1〉〈f2,1〉+O(ε)

and since ε > 0 was chosen arbitrarily small, we obtain that 0 is a pole of order 1 of R+(λ)

with residue −1⊗ 1, the projection on the constants. The same arguments also immediately
show that for λ0 ∈ R \ {0},

lim
λ→iλ+0

(λ− iλ0)〈R+(λ)f1, f2〉 = 0

As to R−, the same arguments apply and the residue at 0 is −1⊗ 1.
The converse is obtained from the fact that the spectrum on (C·1)⊥ is absolutely continuous.

Indeed, for f1, f2 ∈ C∞(M), orthogonal to the constants, one has:

〈etXf1, f2〉L2 =

∫ +∞

−∞
eitλ〈dP (λ)f1, f2〉L2

= − 1

2π

∫ +∞

−∞
eitλ〈(R+(−iλ) +R−(iλ))f1, f2〉L2dλ

=
1

2π
T̂ (−t),

where T (λ) := −〈(R+(−iλ) + R−(iλ))f1, f2〉L2 . By the spectral theorem, T ∈ L1(R) (and
−
∫
〈(R+(−iλ) + R−(iλ))f1, f2〉L2dλ = 〈f1, f2〉L2) so by the Riemann-Lebesgue theorem, one

has
lim

t→+∞
〈etXf1, f2〉L2 = lim

t→+∞

1

2π
T̂ (−t) = 0,

that is the flow is mixing. �

In order to prove exponential mixing (i.e. Ct(f1, f2) converges exponentially fast to 0 if the
fi’s have 0 average) and not only mixing, one needs to prove the existence of a resonance-free
strip {<(z) > −δ} for some δ > 0, see [Liv04, FT13, NZ15, GC20]. This is a much more
difficult question and will not be treated in the present survey.

4.4. Resonances at z = 0. The description of the resolvent at z = 0 will play an important
role in the following. By the previous paragraph, we can write in a neighborhood of z = 0 the
following Laurent expansion (beware the sign conventions):

R+(z) = −R+
0 −

Π+
0

z
+O(z).
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(Or in other words, using our abuse of notations, (X + z)−1 = R+
0 +Π+

0 /z +O(z).) And:

R−(z) = −R−0 −
Π−0
z

+O(z).

(Or in other words, using our abuse of notations, (z − X)−1 = R−0 +Π−0 /z + O(z).) As a
consequence, these equalities define the two operators R±0 as the holomorphic part (at z = 0)
of the resolvents −R±(z). We introduce:

Π := R+
0 +R−0 . (4.10)

Note that, due to the embedding properties Hs ↪→ Hs± ↪→ H−s, we can a priori only say that
these operators are bounded as maps Hs → H−s. We have the:

Lemma 4.11. The operator Π : Hs(M, E)→ H−s(M, E) is bounded for any s > 0. We have
(R+

0 )∗ = R−0 , (Π
+
0 )∗ = Π−0 = Π+

0 . Thus Π is formally self-adjoint. Moreover, it is nonnegative
in the sense that for all f ∈ C∞(M, E), 〈Πf, f〉L2 = 〈f,Πf〉L2 ≥ 0. Eventually, the following
statements are equivalent: 〈Πf, f〉L2 = 0 if and only if Πf = 0 if and only if f = Xu+ v for
some u ∈ C∞(M, E) and v ∈ ker(X).

Proof. First of all, for z near 0:

R+(z)∗ = R−(z) = −R−0 −Π−0 /z +O(z)

= −(R+
0 )∗ − (Π+

0 )∗/z +O(z),

which proves (R+
0 )∗ = R−0 , (Π

+
0 )∗ = Π−0 .

We now show that Π+
0 = Π−0 . Since X is skew-adjoint, we know by [DZ17, Lemma 2.3] that

resonant states at 0 are smooth. Therefore, for any s > 0

ker(−X|Hs+) = ker(X|Hs−) = ran(Π−0 |C∞(M,E)) = ran(Π+
0 |C∞(M,E))

(since C∞(M, E) is dense in anisotropic Sobolev spaces). Moreover, ker(Π−0 |C∞(M,E)) =

ker(Π+
0 |C∞(M,E)). Indeed, if f1 ∈ C∞(M, E)∩ker(Π−0 ), then for any f2 ∈ C∞(M, E), one has

0 = 〈Π−0 f1, f2〉L2 = 〈f1,Π
+
0 f2〉L2 , that is f1 is orthogonal to ran(Π+

0 ) = ran(Π−0 ) and thus for
any f2, 0 = 〈f1,Π

−
0 f2〉L2 = 〈Π+

0 f1, f2〉L2 , so f1 ∈ C∞(M, E) ∩ ker(Π+
0 ). As a consequence,

the two projections agree on smooth sections.
To show the nonnegativity, we apply Stone’s formula to the self-adjoint operator iX (with

dense domain DL2 previously defined in (4.1)). More precisely, taking H := L2(M, E ; dµ) ∩
ker Π+

0 , the spectrum of iX on H (near the spectral value 0) is only absolutely continuous and
if π[a,b] denotes the spectral projection onto the energies [a, b], we obtain:

π[a,b] = lim
ε→0

1

2πi

∫ b

a

(
(iX− (λ+ iε))−1 − (iX− (λ− iε))−1

)
dλ

= lim
ε→0

1

2π

∫ b

a
(−R−(−iλ+ ε)−R+(iλ+ ε)) dλ

= − 1

2π

∫ b

a
(R−(−iλ) + R+(iλ)) dλ,
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where the limit is understood in the weak sense (by applying it to f ∈ C∞(SM, E) ∩ ker Π+
0

and pairing it to f). We then obtain:

∂λπ(−∞,λ)|λ=0 =
1

2π
(R−0 +R+

0 ) =
Π

2π
≥ 0.

Assume 〈Πf, f〉L2 = 0 for some f ∈ C∞(M, E); as R−0 = (R+
0 )∗, equivalently we have

<(〈R+
0 f, f〉L2) = 0. Using the fact that Hs+ = ker Π+

0 ⊕ ran Π+
0 for any s > 0, as well as

the relation XR+
0 = 1 − Π+

0 given in (4.12) below, we have that X : ker Π+
0

∼=−→ ker Π+
0 is

an isomorphism with inverse ±R+
0 . Thus setting u := ±R+

0 f and v := Π+
0 f , we may write

f = Xu+ v. We compute

0 = <(〈R+
0 f, f〉L2) = <(〈u,Π+

0 f + Xu〉L2) = <(〈u,Xu〉L2) = −=(〈−iXu, u〉L2), (4.11)

using that Π+
0 is formally self-adjoint and u ∈ ker Π+

0 . Since f ∈ C∞(M, E) ⊂ Hs+ for any
s > 0, we have u ∈ Hs+ for any s > 0, and so the wavefront set of u satisfies WF(u) ⊂ E∗u.
Thus again an application of [DZ17, Lemma 2.3] gives u ∈ C∞. It is then immediate that
Πf = 0, thus completing the proof.9 �

In the following, we will write kerX instead of kerX|Hs± in order not to burden the nota-
tions, but be careful that we are always referring to elements in anisotropic spaces (otherwise,
kerX|H−s is infinite dimensional for any s > 0). We also record here for the sake of clarity
the following identities:

Π+
0 R+

0 = R+
0 Π+

0 = 0, Π−0 R−0 = R−0 Π−0 = 0,

XΠ±0 = Π±0 X = 0, XR+
0 = R+

0 X = 1−Π+
0 , −XR−0 = −R−0 X = 1−Π−0 .

(4.12)

We also have:

Lemma 4.12. We have:

(1) If u ∈ ker(X), then u ∈ C∞(M, E) and u does not vanish unless u ≡ 0,
(2) There exists a basis u1, ..., up of ker(X) such that

Π±0 =

p∑
i=1

〈·, ui〉L2ui.

(3) Let u1, ..., up be a basis of ker(X). Then for all x ∈ M, the vectors (u1(x), ..., up(x))

are independent as elements of Ex. We can thus always assume that (u1(x), ..., up(x))

are orthonormal.
(4) In particular, dim(ker(X)) ≤ rank(E).

This Lemma is a simple consequence of the previous discussion and we leave it for the
reader as an exercise.

9Note that the positivity of Π alternatively follows from (4.11) and Lemma [DZ17, Lemma 2.3].
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5. Livsic theory

As in the previous section, we consider the case of a smooth manifoldM endowed with an
Anosov vector field X, and denote by G the set of periodic orbits. We will also always assume
that the flow is transitive i.e. there is a dense orbit. For such an Anosov flow, periodic orbits
are dense and one can expect that the knowledge of the behaviour of a function (or a more
general object) along closed geodesics allows to reconstruct the function on the whole of M
up to some natural obstructions. This is the content of the Livsic theory.

5.1. Elementary properties of Anosov flows. We first need to recall some results on
periodic orbits for Anosov flows. An integral version of the Anosov property (2.4) is the
existence of strong stable and strong unstable manifolds W s,u: given x ∈ M, there exists two
(smooth) immersed submanifolds

W s,u(x) := {y ∈M | d(ϕtx, ϕty)→t→±+∞ 0} ,

whose tangent space at y ∈ W s,u(x) is given by Es,u(y). We will denote by W s,u
ε (x) the set

of points

W s,u
ε (x) := {y ∈M | ∀ ± t ≥ 0, d(ϕtx, ϕty) ≤ ε, d(ϕtx, ϕty)→t→±+∞ 0} .

The following Proposition is known as the Anosov closing lemma.

Proposition 5.1 (Anosov closing lemma). There exists constants C, θ, T0 > 0 such that for
ε > 0 small enough, if x ∈ M satisfies d(ϕTx, x) < ε for some T > T0, then there exists a
periodic point x0 ∈M of period T + τ , with τ ≤ Cε, such that

max (d(x, x0), d(ϕTx, x0)) < ε.

Moreover, for all t ∈ [0, T ]:

d(ϕtx, ϕtp) ≤ Cεe−θmin(t,T−t).

Although we isolated it, this closing lemma follows from a more general shadowing lemma
which is the content of the following Theorem. We will write γ = [xy] if γ is an orbit segment
with endpoints x and y.

Theorem 5.2 (Specification Theorem). There exist ε0, T∗, C, θ > 0 with the following prop-
erty. Consider ε < ε0, and a (possibly infinite) sequence of orbit segments γi = [xiyi] of length
Ti greater than T∗ such that for any n, d(yn, xn+1) ≤ ε. Then there exists a true orbit γ of the
flow and times τi such that γ restricted to [τi, τi + Ti] shadows γi up to Cε. More precisely,
for all t ∈ [0, Ti], one has

d(γ(τi + t), γi(t)) ≤ Cεe−θmin(t,Ti−t).

Moreover:

|τi+1 − (τi + Ti)| ≤ Cε.

Eventually, if the sequence of segments γi is periodic, then the orbit γ is periodic.
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We refer to [KH95, Corollary 18.1.8] and [HF, Theorem 5.3.2] for a proof. The last bound
is a consequence of hyperbolicity and can be found in [HF, Proposition 6.2.4].

In particular, if γ0 is an orbit segment [xy] with d(y, x) ≤ ε0, then applying the above
theorem to γi = γ0 for all i ∈ Z, one obtains a periodic orbit that shadows γ0: this is nothing
but the Anosov closing lemma, see Proposition 5.1.

5.2. Abelian X-ray transform. The usual Abelian X-ray transform consists in integrating
continuous (or Hölder-continuous) along closed geodesics.

Definition 5.3. We define the X-ray transform I : C0(M)→ `∞(G) by:

If : G 3 γ 7→ 1

`(γ)

∫ `(γ)

0
f(ϕt(x))dt,

where `(γ) is the period of γ ∈ G and x ∈ γ is an arbitrary point.

It is straightforward that any function of the form f = Xu, for u sufficiently regular is in the
kernel of I. The celebrated Livsic’s Theorem characterizes the kernel of the X-ray transform:

Theorem 5.4 (Livsic ’72, De La Llave-Marco-Moriyon ’86). If f ∈ Cα(M) for some α ∈
(0, 1) ∪ N ∪ {+∞} and If = 0, then there exists u ∈ Cα(M) such that f = Xu.

For α ∈ (0, 1) (i.e. in Hölder regularity), the original proof can be found in the paper of
Livsic [Liv72]. We also refer to the proof of Guillemin-Kazhdan [GK80a, Appendix] and to
[KH95, Theorem 19.2.4]. The idea is to define u as the integral of f over a dense orbit in
the manifold and then to compute the Hölder regularity. The hardest part of the previous
statement is to prove that u is more regular than Hölder continuous when f is smoother:
this was proved in [dlLMM86]. In the particular case where X preserves a smooth measure
dµ (which is the case of the geodesic flow for instance), this can be proved fairly easily via
microlocal techniques.

Proof. We first deal with the Hölder case i.e. α ∈ (0, 1). We consider a point x0 whose
orbit O(x0) is dense in M and we define u(ϕtx0) :=

∫ t
0 f(ϕsx0)ds (remark that Xu = f on

O(x0) by construction). Let us prove that u is Cα on O(x0). We pick x, y ∈ O(x0) such that
d(x, y) < ε0 (in particular, the Anosov closing lemma of Proposition 5.1 is satisfied at this
scale). We write x = ϕtx0, y = ϕt+Tx0 and we assume that T ≥ T∗ which is always possible
since the orbit is dense. Let p be the periodic point of period T + τ (with |τ | ≤ Cd(x, y))
closing the segment of orbit [xy]. We have:

u(x)− u(y) =

∫ T

0
f(ϕsx)ds

=

∫ T

0
f(ϕsx)− f(ϕsp)ds︸ ︷︷ ︸

=(I)

+

∫ T+τ

0
f(ϕsp)ds︸ ︷︷ ︸

=(II)

−
∫ T+τ

T
f(ϕsp)ds︸ ︷︷ ︸

=(III)

And:

|(I)| ≤
∫ T

0
‖f‖Cαd(ϕsx, ϕsp)

αds ≤ C‖f‖Cαd(x, y)α
∫ T

0
e−αθmin(s,T−s)ds . d(x, y)α
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By hypothesis, we know that (II) = 0. And |(III)| ≤ ‖f‖∞|τ | . d(x, y). As a consequence,
u is Cα on O(x0) (and its Cα norm is controlled by that of f). Since O(x0) is dense in M , u
admits a unique Cα-extension to M and it satisfies Xu = f .

We now assume that X preserves a smooth measure dµ10 and consider the case where
α = ∞. We want to prove that u ∈ C∞(M). We already know that f = Xu, for some
Hölder-continuous u and we can always assume that u integrates to 0. As Cα ↪→ H±, we can
apply the positive resolvent R+

0 which gives R+
0 f = R+

0 Xu = u and thus WF(u) ⊂ E∗s . But
we can also apply the negative resolvent R−0 which gives that WF(u) ⊂ E∗u. Since E∗u and
E∗s are transverse, this implies that WF(u) = ∅, that is u is smooth. If X does not preserve
a smooth measure, a similar microlocal argument can be applied, but one has to work with
other spaces than anisotropic Sobolev spaces and the proof is more involved, see [GL]. �

5.3. Approximate Abelian Livsic Theorem. It is also possible to prove a positive version
of the Livsic theorem (see [LT05]) i.e. if If ≥ 0, then f is cohomologous to a positive function
i.e. there exists a function u and h such that f = Xu+h and h ≥ 0. In the following, we will
rather need an approximate version of the Livsic theorem proved in [GL19a]:

Theorem 5.5 (Gouëzel-L. ’19). There exists C, τ, α > 0 such that the following holds: assume
that f ∈ C1(M) and ‖f‖C1 ≤ 1 and

sup
γ∈G
|If(γ)| < ε,

for some ε > 0 small enough. Then, there exists u, h ∈ Cα(M) such that f = Xu + h and
‖h‖Cα ≤ ετ .

The idea of proof goes as follows: first of all, one constructs a specific orbit, of controlled
length O(ε−1/2) which is sufficiently dense in the manifold (i.e. εβ1 dense) and sufficiently
separated (i.e. a transverse disk to the orbit of size ∼ εβ2 does not hit another portion of the
orbit). Once one has this good orbit, one can more or less follow the proof of the exact Livsic
Theorem. Note that, in contrast to the exact Livsic Theorem, it is not clear yet if a smoother
version of the approximate Livsic Theorem exists:

Question 5.6. Assume that f ∈ Ck(M), ‖f‖Ck ≤ 1 (for some k ≥ 0) and

sup
γ∈G
|If(γ)| < ε,

for some ε > 0 small enough. Is it then possible to decompose f = Xu+h with ‖h‖Ck ≤ ετ?

Proof of Theorem 5.5. The following lemma states that we can find a sufficiently dense and yet
separated orbit in the manifoldM. The separation holds transversally to the flow direction,
and is defined as follows. We introduce

Wε(x) :=
⋃

y∈Wu
ε (x)

W s
ε (x).

We then say that a set S is ε-transversally separated if, for any x ∈ S, we have S∩Wε(x) = {x}.
10If this is not the case, the argument is more involved, see [dlLMM86]. In our applications, X will be the

geodesic flow, so it will indeed preserve a smooth measure dµ (the Liouville measure).
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Lemma 5.7. There exist βs, βd > 0 such that the following holds. Let ε > 0 be small enough.
There exists a periodic orbit O(x0) := (ϕtx0)0≤t≤T with T ≤ ε−1/2 such that this orbit is
εβs-transversally separated and (ϕtx0)0≤t≤T−1 is εβd-dense. If κ > 0 is some fixed constant,
then one can also require that there exists a piece of O(x0) of length ≤ C(κ) which is κ-dense
in the manifold.

This Lemma is the cornerstone of the argument. Since it is technical, we do not intend to
prove it here and refer to [GL19a, Lemma 3.4] for a proof. It uses the specification Theorem
5.2.

We can always assume that ε is small enough (i.e. ε ≤ ε0) to apply Lemma 5.7, with κ = ε0.
On the orbit O(x0) given by this lemma, we define ũ by

ũ(ϕtx0) =

∫ t

0
f(ϕsx0)ds.

Since it may not be continuous at x0, we will rather denote by O(x0) the set (ϕtx0)0≤t≤T−1.

Lemma 5.8. There exist β1, C > 0 independent of ε such that ‖ũ‖Cβ1 (O(x0)) ≤ C.

Proof. We first study the Hölder regularity of ũ, namely we want to control |ũ(x)− ũ(y)| by
Cd(x, y)β1 for some well-chosen exponent β1, when d(x, y) ≤ ε0 (where ε0 is the scale under
which the Shadowing Theorem 5.2 holds). If x and y are on the same local flow line, then
the result is obvious since f is bounded by 1, so we are left to prove that ũ is transversally
Cβ1 . Consider x = ϕt0x0 ∈ O(x0) and y = ϕt0+t ∈ Wε0(x). By transversal separation of
O(x0), these points satisfy d(x, y) ≥ εβs . We can close the segment [xy] i.e., we can find a
periodic point p such that d(p, x) ≤ Cd(x, y) with period tp = t + τ , where |τ | ≤ Cd(x, y)

which shadows the segment. Then:

|ũ(y)− ũ(x)| ≤
∣∣∣∣∫ t

0
f(ϕsx)ds−

∫ tp

0
f(ϕsp)ds

∣∣∣∣︸ ︷︷ ︸
=(I)

+

∣∣∣∣∫ tp

0
f(ϕsp)ds

∣∣∣∣︸ ︷︷ ︸
=(II)

The first term (I) is bounded by Cd(x, y)β
′
1 for some β′1 > 0 depending on the dynamics,

whereas the second term (II) is bounded — by assumption — by εtp, as in the proof of the
usual Livsic Theorem 5.4. But εtp . εt . εT . ε1/2 . d(x, y)1/2βs . We thus obtain the
sought result with β1 := min(β′1, 1/2βs).

We now prove that ũ is bounded for the C0-norm. We know that there exists a segment
of the orbit O(x0) — call it S — of length ≤ C which is ε0-dense in M. In particular,
for any x ∈ O(x0), there exists xS ∈ S with d(x, xS) ≤ ε0, and therefore |ũ(x) − ũ(xS)| ≤
Cd(x, xS)β1 ≤ Cεβ10 thanks to the Hölder control of the previous paragraph. Using the same
argument with x0, we get as ũ(x0) = 0

|ũ(x)| = |ũ(x)− ũ(x0)| ≤ |ũ(x)− ũ(xS)|+ |ũ(xS)− ũ((x0)S)|+ |ũ(x0)− ũ((x0)S)|.

The first and last term are bounded by Cεβ10 , and the middle one is bounded by C as S has
a bounded length and ‖f‖C0 ≤ 1. �

We now cover the manifold M by a finite union of flowboxes Ui := ∪t∈(−δ,δ)ϕt(Σi) (of
some small δ > 0), where Σi := Wε0(xi) and xi ∈ M. For each i, we extend the function
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ũ (defined on O(x0)) to a Hölder function ui on Σi, by the formula ui(x) = supy ũ(y) −
‖ũ‖Cβ1 (O(x0))d(x, y)β1 , where the supremum is taken over all y ∈ O(x0). With this formula, it
is classical that the extension is Hölder continuous, with ‖ui‖Cβ1 (Σi)

≤ ‖ũ‖Cβ1 (O(x0)). We then
push the function ui by the flow in order to define it on Ui by setting for x ∈ Σi, ϕtx ∈ Ui:

ui(ϕtx) = ui(x) +

∫ t

0
f(ϕsx)ds.

Note that the extension is still Hölder with the same regularity. We now set u :=
∑

i uiθi and
h := f −Xu = −

∑
i uiXθi. The functions Xθi are uniformly bounded in C∞, independently

of ε so the functions uiXθi are in Cβ1 with a Hölder norm independent of ε > 0 and thus
‖h‖Cβ1 ≤ C.

Lemma 5.9. ‖h‖Cβ1/2 ≤ εβ3/2

Proof. We claim that h vanishes on O(x0): indeed, on Ui ∩ O(x0) one has ui ≡ ũ and thus

h = −ũ
∑
i

Xθi = −ũX
∑
i

θi = −ũX1 = 0.

Since O(x0) is εβd-dense and ‖h‖Cβ1 ≤ C, we get that ‖h‖C0 ≤ Cεβ1βd = Cεβ3 , where
β3 = β1βd. By interpolation, we eventually obtain that ‖h‖Cβ1/2 ≤ εβ3/2. �

The previous lemma provides the desired estimate on the remainder h and completes the
proof of Theorem 5.5. �

5.4. Livsic theory for cocycles. Let G be a Lie group. We now consider a smooth cocycle
C :M× R→ G over the flow (ϕt)t∈R generated by X i.e. a map satisfying:

C(ϕsx, t)C(x, s) = C(x, s+ t),

for all x ∈M, s, t ∈ R. Its infinitesimal generator is defined to be

f(x) :=
d

dt
C(x, t) ∈ C∞(M, g),

and C can be recovered from f as the unique solution the following ODE:

C(x, 0) = eG,
d

dt
C(x, t) = dRC(x,t)(f(ϕt(x))),

where eG denotes the neutral element in G and Rg is the multiplication on the right by g ∈ G.
A typical example of a cocycle is provided by parallel transport of sections of a vector bundle
E →M along the flowlines ofX, and with respect to a connection∇E . This will be extensively
studied in §8. In the particular case where E = Cr×M is trivial (of rank r) and the connection
is unitary, the parallel transport is indeed a cocycle C : M× R → G, where G = U(r), the
group of unitary matrices. We now introduce the periodic orbit obstruction:

Definition 5.10. We say that C satisfies the periodic orbit obstruction if C(x, T ) = eG for
any periodic point x ∈M (where T denotes the period of x).
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The previous X-ray transform of f ∈ C0(M) can be integrated in this framework by con-
sidering the cocycle:

C(x, t) := exp

(∫ t

0
f(ϕ−s(x)) ds

)
.

Then If = 0 if and only if C satisfies the periodic orbit obstruction in the Lie group (R∗+,×).
There is a generalization of Livsic’s Theorem to this framework, due to [Liv72, NT98], which
we will call the Livsic cocycle Theorem:

Theorem 5.11 (Livsic ’72, Nitica-Torok ’98). Let G be a Lie group, let C : M× R → G

be a α-Hölder continuous cocycle which satisfies the periodic orbit obstruction. Then C is
cohomologically trivial, i.e. there exists u ∈ Cα(M, G) such that

C(x, t) = u(ϕtx)u(x)−1,

for all x ∈M, t ∈ R. Moreover, if C is smooth, then u is also smooth.

The same proof as that of Theorem 5.4 can be mimicked in order to deal with the case
of Hölder regularity but proving that u is smooth when C is smooth is harder. The original
arguments of [NT98] involve more sophisticated tools from hyperbolic dynamical systems. An
alternative approach involving microlocal analysis (in the case where G is a linear Lie group)
can be found in [GL]. As in the case of the Abelian Livsic Theorem, one can also prove
an approximate version of the Livsic cocycle Theorem. The following was proved in [CLb],
following the arguments of the approximate Livsic theorem [GL19a] and formulated in the
case of G = U(r). The generalization to any compact Lie group is straightforward:

Theorem 5.12 (Cekic-L. ’20). Let G be a compact Lie group, let C : M× R → G be a
α-Hölder continuous cocycle. Assume that

dG(C(x, T ), eG) ≤ εT,

for all periodic point x ∈M (where T is the period of x), where ε > 0 is small enough. Then,
there exists u ∈ Cβ(M, G) (where 0 < β ≤ α only depends on the vector field X and on α)
and a β-Hölder continuous cocycle C ′ :M× R→ G such that:

C(x, t) = u(ϕtx)C ′(x, t)u(x)−1,

and C ′ is generated by f ′ ∈ Cβ(M, g) such that:

‖f ′‖Cβ(M,g) ≤ ετ .

Here τ > 0 only depend on the flow.

As in the Abelian case, it is not clear yet if this Theorem holds in higher regularity, namely
if C is smooth (or bounded in some Ck regularity), can one show that ‖f ′‖Ck ≤ Cετ? It could
also be interested to deal with the case of a general Lie group G.

Remark 5.13. The previous results are formulated in the case where G is a trivial principal
bundle. This can easily be generalized in order to include the non-trivial case. We refer to
[CLb, Section 3] for further details and more general statements.
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Part 2. Geometric inverse problems

6. Geodesic X-ray transform

6.1. Definition and first properties. This paragraph is an application of the Abelian Livsic
theory of §5.2 to the geodesic case, i.e. when X is the geodesic vector field on the unit tangent.
We assume that (M, g) is an Anosov Riemannian manifold and set M := SM and X is the
geodesic vector field. In this case, we know by Lemma 2.3 that there exists a unique closed
geodesic by free homotopy class c ∈ C (where C denotes the set of free homotopy classes) and
we can therefore identify the set G of periodic orbits of the geodesic flow (ϕt)t∈R with C. The
Abelian X-ray transform of Definition 5.3 can therefore be seen as a map

I : C0(SM)→ `∞(C), If(c) :=
1

Lg(c)

∫ Lg(c)

0
f(ϕt(x, v))dt,

where (x, v) is an arbitrary point on the unique closed geodesic γg(c) ∈ c in the free homotopy
class c ∈ C. We will be particularly interested in the case where the functions are pullback via
the map π∗m of symmetric tensors on the base M , as introduced in §3. We therefore consider:

Im := I ◦ π∗m.

Of course, using the relation Xπ∗m = π∗m+1D of Lemma 3.2, it is clear that potential tensors
are always in the kernel of Im, namely:{

Dp | p ∈ C∞(M,⊗m−1
S T ∗M

}
⊂ ker(Im). (6.1)

Definition 6.1. We say that Im is solenoidal injective (or s-injective in short) if the inclusion
(6.1) is an equality.

Observe that by the Livsic Theorem 5.4, if Imf = 0, then π∗mf = Xu, for some smooth
function u ∈ C∞(SM). An equation of the form Xu = F (where F ∈ C∞(SM)) is called
a cohomological equation. By the discussion on symmetric tensors of §3.1.1, we know that
π∗mf ∈ C∞(SM) has degree at most m (see Lemma 3.1) and more precisely, π∗mf = fm +

fm−2 + ... where fm−2i ∈ C∞(M,Ωm−2i). By the mapping properties of X (see Lemma 3.6) it
immediately implies that u has only odd Fourier components (resp. even) if m is even (resp.
if m is odd). The question is then wether u has degree m − 1 or not. If it is the case, then
this proves that f is a potential tensor as u can be written in the form u = π∗m−1ũ and thus
Xu = π∗m−1ũ = π∗mDũ = π∗mf , that is f = Dũ.

We will explain the solenoidal injectivity of the X-ray transform in the following cases (see
[CS98, DS03]):

Theorem 6.2 (Croke-Sharafutdinov ’98, Dairbekov-Sharafutdinov ’03). Assume (M, g) is
Anosov. Then I0 and I1 are solenoidal-injective. If we further assume that (M, g) has non-
positive curvature, then Im is solenoidal-injective for every m ∈ N.

In the two-dimensional case, the curvature assumption can be relaxed and Im is known to
be injective or any m ∈ N as long as (M, g) is Anosov (see [PSU14, Gui17a]). It is conjectured
that this should also hold in higher dimension:

Question 6.3. Is Im solenoidal-injective when (M, g) is Anosov (in any dimension)?
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The strategy of proof of Theorem 6.2 relies on an energy identity called the Pestov identity
and is done in two steps. First of all, one proves that given a cohomological equation Xu = f ,
where f = f0 + ...fm (and fi ∈ C∞(M,Ωi)) has finite degree m ∈ N, then u also does have
finite degree.

Lemma 6.4. Assume f, u ∈ C∞(SM) and Xu = f with deg(f) <∞. Then deg(u) <∞.

The proof is explained in the next paragraph. As a consequence, we can write u = u0 +

... + uN with ui ∈ C∞(M,Ωi). We now assume by contradiction that N ≥ m. Projecting
the equality Xu = f onto the spherical harmonics of degree N + 1 and using the mapping
properties of X (see Lemma 3.6), we obtain that X+uN = 0, that is uN is a CKT of degree N ,
as they were introduced in Definition 3.7. As a consequence, if one can prove that there are no
CKTs of degree m ≥ 1, this implies that uN = 0 which is a contradiction, hence N ≤ m− 1.
The second step is to prove:

Lemma 6.5. If (M, g) has negative curvature, there are no CKTs of degree m ≥ 1.

It is remarkable that this strategy still works when when twisting with an arbitrary vector
bundle E (modulo some extra work). This is explained in §6.3. Both Lemmas 6.4 and 6.5 rely
on the so-called Pestov energy identity.

6.2. Pestov identity, cohomological equations. We start with the case of the trivial line
bundle C×M →M .

Lemma 6.6 (Pestov identity). Let u ∈ H2(SM). Then

‖∇VXu‖2L2(SM,N ) = ‖X∇Vu‖2L2(SM,N ) − 〈R∇Vu,∇Vu〉L2(SM,N ) + (n− 1)‖Xu‖2L2(SM).

Proof. For u ∈ C∞(SM), using the commutator formulas (2.2):

‖∇VXu‖2 − ‖∇X∇Vu‖2 = 〈∇VXu,∇VXu〉 − 〈∇X∇Vu,∇X∇Vu〉

= 〈(X divV∇VX − divVX
2∇V)u, u〉

= 〈(−divH∇VX + divVX∇H)u, u〉
= 〈(−divH∇VX + divV∇HX + divVR∇V)u, u〉

= −(n− 1)〈X2u, u〉+ 〈divVR∇Vu, u〉

= (n− 1)‖Xu‖2 − 〈R∇Vu,∇Vu〉

�

An important point is the following:

Lemma 6.7. Assume (M, g) is Anosov. Then, there exists C > 0 such that for all Z ∈
C∞(SM,N ):

‖XZ‖2L2(SM,N ) − 〈RZ,Z〉L2(SM,N ) ≥ C‖Z‖2L2(SM,N ).

Proof. First of all, observe that for Z ∈ C∞(SM,N ), pointwise in SM :

X〈Z,UZ〉 = 2〈UZ,XZ〉+ 〈Z, (XU)Z〉
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Consider U ∈ Cα(SM,End(N )), one of the two solutions of the Riccatti equation (2.5). Then
for (x, v) ∈ SM :

|XZ − UZ|2(x, v) = |XZ(x, v)|2 + |UZ(x, v)|2 − 2〈XZ(x, v), UZ(x, v)〉

= |XZ(x, v)|2 + 〈U2Z(x, v), Z(x, v)〉 − 2〈XZ(x, v), UZ(x, v)〉

= |XZ(x, v)|2 − 〈RZ(x, v), Z(x, v)〉
− 〈(XU)Z(x, v), Z(x, v)〉 − 2〈XZ(x, v), UZ(x, v)〉

= |XZ(x, v)|2 − 〈RZ(x, v), Z(x, v)〉 −X〈Z(x, v), UZ(x, v)〉.
Integrating over SM , we obtain:

‖XZ‖2L2 − 〈RZ,Z〉L2 = ‖(X − U)Z‖2L2 .

We now specify U = U+ and consider the operator −X+U+ : C∞(SM,N )→ C∞(SM,N ).
By (4.2), the resolvent of this operator is initially defined on {<(z)� 0} by:

(−X + U+ − z)−1 = −
∫ ∞

0
e−tzet(−X+U+)dt, (6.2)

where et(−X+U+) = RU+(t) is the propagator introduced in Lemma 2.1, namely

ṘU+(t) = (−X + U+)RU+(t), RU+(0) = 1.

Using the bound of Lemma 2.1, we then obtain:

‖(−(X − U+)− z)−1‖L2(SM,N )→L2(SM,N ) ≤ C
∫ +∞

0
e−<(z)te−λtdt =

C

<(z) + λ
.

This shows that the resolvent (6.2) is holomorphic in {<(z) > −λ}. In particular, it is well-
defined at 0 and thus:

‖Z‖L2(SM,N ) ≤ C/λ× ‖(X − U+)Z‖L2(SM,N ).

�

Combined with the previous Lemma, a direct consequence of the Pestov identity is the
following injectivity results for the geodesic X-ray transform:

Lemma 6.8. Assume (M, g) is Anosov. Then I0 is injective on C∞(M) and I1 is solenoidal
injective on C∞(M,T ∗M).

Proof. Assume f ∈ C∞(M) satisfies I0f = 0. Then, by the smooth Livsic Theorem 5.4, there
exists u ∈ C∞(SM) such that π∗0f = Xu. Applying the Pestov identity of Lemma 6.6, we
obtain:

‖∇VXu‖2L2(SM,N ) = 0 = ‖X∇Vu‖2L2(SM,N ) − 〈R∇Vu,∇Vu〉L2(SM,N )︸ ︷︷ ︸
≥0

+(n− 1)‖Xu‖2L2(SM),

and thus by Lemma 6.7, we obtain Xu = 0, hence f ≡ 0.
Let us now assume f ∈ C∞(M,T ∗M) satisfies I1f = 0. Then π∗1f = Xu for u ∈ C∞(SM).

An easy computation shows that:

‖∇VXu‖2L2(SM,N ) = 〈(−∆V)π∗1f, π
∗
1f〉L2(SM) = (n− 1)‖π∗1f‖2L2(SM).
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Hence, by the Pestov identity: ‖X∇Vu‖2L2(SM,N ) − 〈R∇Vu,∇Vu〉L2(SM,N ) = 0, and Lemma
6.7 implies that ∇Vu = 0, that is u is of degree 0. �

The previous Pestov identity of Lemma 6.6 specified to a function u ∈ C∞(M,Ωm) yields
the

Lemma 6.9 (Localized Pestov identity). Let u ∈ C∞(M,Ωm). Then:

(2m+ n− 3)‖X−u‖2 + ‖∇Hu‖2 − 〈R∇Vu,∇Vu〉L2 = (2m+ n− 1)‖X+u‖2

The proof is similar to that of Lemma 6.6 using the commutator identities (we refer to
[PSU15, Proposition 3.4]). The crucial observation (which is a straightforward consequence
of the previous Lemma 6.9) is that if the sectional curvatures are non-positive:

‖X−u‖2 ≤ c(m,n)‖X+u‖2L2 , (6.3)

for u of degree m, where

c(m,n) =
2m+ n− 1

2m+ n− 3
.

We can now prove Lemma 6.5.

Proof of Lemma 6.5. If u ∈ C∞(M,Ωm), X+u = 0 and the sectional curvatures are non-
positive, (6.3) implies that X−u = 0. Thus Xu = (X− + X+)u = 0. By ergodicity, u is
constant, thus u = 0 if m ≥ 1. �

We now go on with the proof of Lemma 6.4:

Proof of Lemma 6.4. We assume that Xu = f and f has finite degree. We want to show that
u has finite degree too and we argue by contradiction. We decompose u = u0 + u1 + .... As
f has finite degree, the cohomological equation Xu = f gives X+uk−1 + X−uk+1 = 0 for all
k ≥ k0 for k0 is chosen large enough (greater than deg(f)). As a consequence, using (6.3):

‖X+uk−1‖2L2 = ‖X−uk+1‖2L2

≤ c(k + 1, n)‖X+uk+1‖2L2

= c(k + 1, n)‖X−uk+3‖2L2

≤ c(k + 1, n)c(k + 3, n)‖X+uk+3‖2L2 ≤ ... ≤
N∏
j=0

c(k + 1 + 2j)‖X+uk+1+2N‖2L2

Since u is smooth, we know by Lemma 3.9 that ‖X+uN‖2L2 ≤
Cα
Nα

for any α > 0. It is

then sufficient to prove that the product
∏N
j=1 c(k + 1 + 2j) diverges polynomially fast, i.e.∏N

j=1 c(k+ 1 + 2j) ≤ Nβ , for some exponent β > 0 (left to the reader). As a consequence, we
deduce that

N∏
j=0

c(k + 1 + 2j)‖X+uk+1+2N‖2L2 →N→0 0.

This implies that X+uk−1 = 0, hence uk−1 = 0 since there are no CKTs by Lemma 6.5. Hence
u has finite degree. �
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6.3. Twisted cohomological equations. It is remarkable that the previous strategy still
works in the case where one introduces a twist by a vector bundle E → M , as in §2.2. This
was discovered in [GPSU16].

Lemma 6.10 (Twisted Pestov identity). Let u ∈ H2(SM, π∗E). Then

‖∇EVXu‖2L2 = ‖X∇EVu‖2L2 − 〈R∇EVu,∇EVu〉L2 − 〈F Eu,∇EVu〉L2 + (n− 1)‖Xu‖2L2 .

We also have a localized twisted Pestov identity when specified to u ∈ C∞(M,Ωm ⊗ E):

Lemma 6.11 (Localized twisted Pestov identity). Let u ∈ H2(M,Ωm ⊗ E). Then:

(2m+ n− 3)‖X−u‖2 + ‖∇EHu‖2 − 〈R∇EVu,∇EVu〉L2 − 〈F Eu,∇EVu〉L2 = (2m+ n− 1)‖X+u‖2

The proofs of these lemmas can be found in [GPSU16, Section 3]. Some extra-work is then
required but, using this identity, one can still prove a similar result to Lemma 6.4, asserting
that solutions to twisted cohomological equations Xu = f have finite degree when f has finite
degree:

Lemma 6.12. Assume f, u ∈ C∞(SM, π∗E) and Xu = f with deg(f) <∞. Then deg(u) <

∞.

We refer to [GPSU16, Theorem 4.1] for a proof. As before, if f is of degree m and Xu = f ,
the (finite) degree of u is determined by the (non)existence of twisted CKTs, i.e. elements
in kerX+. By [CL20], a connection ∇E has generically no CKTs, which implies in particular
that for such a generic connection, the cohomological equations are solvable, that is if Xu = f

with f is of degree m, then u is of degree m− 1. However, there are exceptional connections
which always carry CKTs and it is not always easy to compute them. Nevertheless, still using
the twisted Pestov identity, one can show the following:

Lemma 6.13. Assume that (M, g) has negative sectional curvature bounded from above by
−κ < 0. Let E →M be a smooth vector bundle with a unitary connection ∇E . Then if m ≥ 1

satisfies

λm := m(m+ n− 2) ≥
4‖F E‖2L∞

κ2
,

one has kerX+|C∞(M,Ωm⊗π∗E) = {0}. In other words, there is always a finite number of CKTs.

We refer to [GPSU16, Theorem 4.5] for a proof. Passing from the negatively-curved case to
the Anosov case is still a big step to accomplish. In particular, one can wonder if analogous
results to Lemma 6.12 and 6.13 can be proved without any assumption on the curvature:

Question 6.14. If (M, g) is Anosov and Xu = f , with deg(f) < ∞, does it imply that
deg(u) <∞?

Question 6.15. If (M, g) is Anosov, is there always a finite number of CKTs?

Eventually, it is not clear at all whether Lemma 6.13 is optimal and we ask the following:

Question 6.16. Is Lemma 6.13 sharp? Can one find a better condition to ensure absence of
CKTs?
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6.4. The normal operator. We now discuss in greater details the properties of the geodesic
Abelian X-ray transform introduced in §6.1 via the introduction of the normal operator, also
called generalized X-ray transform. Although most of the results presented in this paragraph
could be easily extended to the twisted case involving a vector bundle E →M , we stick to the
trivial line bundle. This paragraph relies heavily on microlocal analysis. We refer the reader
to Appendix A for further details.

6.4.1. Definition, first properties. Let

Πm := πm∗(Π + 1 ⊗ 1)π∗m, (6.4)

be the normal operator, where we recall that Π = R+
0 +R−0 is defined thanks to the holomorphic

parts of the resolvents at z = 0. It was introduced by Guillarmou [Gui17a]. We will see that
it enjoys very good analytical properties.

Recall from §3.1.2 that given (x, ξ) ∈ T ∗M , the space ⊗mS T ∗xM decomposes as the direct
sum

⊗mS T ∗xM = ran
(
iσD(x, ξ)|⊗m−1

S T ∗xM

)
⊕ ker

(
iσD∗(x, ξ)|⊗mS T ∗xM

)
= ran

(
jξ|⊗m−1

S T ∗xM

)
⊕ ker

(
ıξ] |⊗mS T ∗xM

)
The projection on the right space parallel to the left space is denoted by πker iξ and Op(πker iξ) =

πkerD∗ +O(Ψ−1) by Lemma 3.5. The following theorem will be crucial in the sequel.

Theorem 6.17. Πm is a pseudodifferential operator of order −1 with principal symbol

σm := σΠm : (x, ξ) 7→ 2π

Cn,m
|ξ|−1πker iξπm∗π

∗
mπker iξ ,

with:
Cn,m =

∫ π

0
sinn−2+2m(ϕ)dϕ.

We now need some wavefront set computations. For that, we are going to rely on §A.3. We
introduce

V∗(V) = 0,H∗(H + R ·X) = 0.

Recall that π : SM →M denotes the projection. We have the following

Lemma 6.18. One has:

WF′(π∗m) ⊂


((x, v), (dπ>ξ︸ ︷︷ ︸

∈V∗

, 0︸︷︷︸
∈H∗

)), (x, ξ)

 | (x, ξ) ∈ T ∗M \ {0}


In particular, if u ∈ C−∞(M,⊗mS T ∗M) then, WF(π∗mu) ⊂ V∗.

Proof. The case m = 0 is rather immediate and follows from Lemma A.16, since dπ(V) = 0.
We have for z = (x, v) ∈ SM :

WF(π∗0u) ⊂
{

(z,dπ(z)T η), (π(z), η) ∈WF(u)
}
⊂ V∗

As to the casem ≥ 1, it actually boils down to the casem = 0. Indeed, consider a point x0 ∈
M and a local smooth orthonormal basis (e1(x), ..., eN(m)(x)) of ⊗mS T ∗M in a neighborhood
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Vx0 of x0, where N(m) =

(
n− 1 +m

m

)
denotes the rank of ⊗mS T ∗M . Consider a smooth

cutoff function χ such that χ ≡ 1 in a neighborhood Wx0 ⊂ Vx0 of x0 and supp(χ) ⊂ Vx0 .
Any smooth section ψ of ⊗mS T ∗M can be decomposed in Vx0 as:

ψ(x) =

N(m)∑
j=1

〈ψ(x), ej(x)〉gej(x)

Thus:

π∗m(χψ) =

N(m)∑
j=1

π∗0 (〈ψ(x), χej(x)〉g)π∗mej =

N(m)∑
j=1

π∗0 (Ajψ)π∗mej ,

where the Aj : C∞(M,⊗mS T ∗M) → C∞(M,R) are pseudodifferential operators of order 0

with support in supp(χ). This expression still holds for a distribution u. Note that π∗mej is
a smooth function on SM , thus the wavefront is given by the π∗0(Ajψ) and by our previous
remark for m = 0:

WF(π∗m(χu)) ⊂ V∗

�

In other words, π∗m localizes the wavefront set in V∗. Moreover, since πm∗ consists in
integrating in the fibers SxM , one has by Lemma A.14

WF(πm∗u) ⊂

(x, ξ) | ∃v ∈ SxM, ((x, v),dπ>ξ︸ ︷︷ ︸
∈V∗

, 0︸︷︷︸
∈H∗

) ∈WF(f)

 , (6.5)

so that πm∗ only selects the wavefront set in V∗ and kills the wavefront set in the other
directions.

For ε > 0, we consider a smooth cutoff function χ such that χ ≡ 1 on [0, ε], and χ ≡ 0 on
[2ε,+∞). For <(λ) > 0, we write

R+(λ) =

∫ 2ε

0
χ(t)e−λte−tXdt+

∫ +∞

ε
(1− χ(t))e−λte−tXdt

=

∫ 2ε

0
χ(t)e−λte−tXdt+

∫ T

ε
(1− χ(t))e−λte−tXdt+ e−Tλe−TXR+(λ),

where T > 2ε. Note that this expression can be meromorphically extended to the whole
complex plane since R+(λ) can by Theorem 4.2. Taking the finite part at 0, we obtain:

R0 =

∫ 2ε

0
χ(t)e−tXdt+

∫ T

ε
(1− χ(t))e−tXdt+ e−TXR0 − T × 1⊗ 1

Note that the last operator is obviously smoothing. We will write

∆T (M ×M) =
{

(x, x′) ∈M ×M,d(x, x′) = T
}
.
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By the previous computation, we obtain:

πm∗R0π
∗
m = πm∗

∫ 2ε

0
χ(t)e−tXdtπ∗m + πm∗

∫ T

ε
(1− χ(t))e−tXdtπ∗m

+ πm∗e
−TXR0π

∗
m + smoothing

Lemma 6.19. One has:

suppsing
(
πm∗e

−TXR0π
∗
m

)
, suppsing

(
πm∗

∫ T

ε
(1− χ(t))e−tXdtπ∗m

)
⊂ ∆T

Proof. By Lemma A.22 and Example A.18,

WF′(e−TXR0) ⊂{(ΦT (z, ξ), (z, ξ)) | (z, ξ) ∈ T ∗(SM)}︸ ︷︷ ︸
=C1

∪ {(Φt(z, ξ), (z, ξ)) | t ≥ T, 〈ξ,X(z)〉 = 0}︸ ︷︷ ︸
=C2

∪E∗u × E∗s︸ ︷︷ ︸
=C3

Since V∗ ∩ E∗s ,V∗ ∩ E∗u = {0}, using (6.5) together with Lemma 6.18, and applying Lemma
A.22, we see that C3 does not contribute to the wavefront set of πm∗e−TXR0π

∗
m. Since there

are no conjugate points (i.e. dϕ>t (V∗) ∩ V∗ = {0} for all t 6= 0), C2 does not contribute
neither. Only C1 contributes to the wavefront set and the sought result follows. We leave it
as an exercise for the reader to prove that suppsing

(
πm∗

∫ T
ε (1− χ(t))e−tXdtπ∗m

)
⊂ ∆T . �

Here is what we have proved: if we go back to the decomposition

R+(λ) =

∫ 2ε

0
χ(t)e−λte−tXdt+

∫ +∞

ε
(1− χ(t))e−λte−tXdt,

take the finite part at 0 and pre/post-compose with πm∗/π∗m, we obtain that

πm∗R0π
∗
m = πm∗

∫ 2ε

0
χ(t)e−tXdtπ∗m +RT ,

where suppsing(KRT ) ⊂ ∆T (M ×M). Since T > 2ε was chosen arbitrary, if we go back to
the operator Πm, then we obtain that for any ε > 0:

Πm = πm∗

∫ +ε

−ε
χ(t)e−tXdtπ∗m + smoothing,

where χ is a cutoff function chosen to be equal to 1 at 0 and 0 outside (−ε, ε).
We can now prove Theorem 6.17. We will only deal with the case of Π0 since it is rather

similar for higher order tensors but complications arise due to the fact that the rank of
⊗mS T ∗M → M is strictly bigger than 1. However, the computation for the principal symbol
will be carried out in full generality.

Proof of Theorem 6.17. By the previous discussion, we have to prove that π0∗
∫ ε
−ε e

tXdtπ∗0 is
a pseudodifferential operator of order 0, where we can choose ε > 0 small enough, less than
the injectivity radius of (M, g). Note that π0∗ is simply the integration in the fibers SxM .
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We fix a local chart (U,ϕ) and compute everything in this chart. If χ is a cutoff function with
support in ϕ(U) such that etX(supp(χ)) ⊂ ϕ(U) for all t ∈ (−ε, ε), then for f ∈ C∞c (ϕ(U)):(

χπ0∗

∫ ε

−ε
etXdtπ∗0χ

)
f(x) =

∫
SxM

χ(x)

∫ ε

−ε
π∗0χf(ϕt(x, v))dtdv

= 2

∫
SxM

χ(x)

∫ ε

0
π∗0χf(ϕt(x, v))dtdv

For fixed x, since ε > 0 is smaller than the injectivity radius of (M, g), the map (t, v) 7→
π0(ϕt(x, v)) = expx(tv) is a diffeomorphism from [0, ε) × SxM onto B(x, ε). By making a
change of variable in the previous integral, we obtain

χπ0∗

∫ ε

−ε
etXdtπ∗0χf(x) =

∫
ϕ(U)

K(x, y)f(y)dy,

with K(x, y) = 2χ(x)χ(y)| det d(exp−1
x )y|

√
det g(y)/dn(x, y). We compute the left symbol

p(x, ξ) =

∫
Rn+1

e−iz·ξK(x, x− z)dz,

and we want to prove that p ∈ S−1(Rn+1
x × Rn+1

ξ ). We write F (x, z) = K(x, x − z). By
[Tay11, Proposition 2.7], this amounts to proving that

∀α, β, ∃Cαβ > 0, ∀x ∈ ϕ(U),∀z 6= 0, |∂βx∂αz F (x, z)| ≤ Cαβ|z|−n−|α| (6.6)

The singularity of F is induced by (x, z) 7→ d−n(x, x − z) (remark that F (x, z) ∼|z|→0

2χ(x)2
√

det g(x)|z|−n) so this boils down to proving (6.6) for this function. But by the
usual argument relying on Leibniz formula for the derivative of a product, this amounts to
proving

∀α, β, ∃Cαβ > 0,∀x ∈ ϕ(U),∀z 6= 0, |∂βx∂αz dn(x, z)| ≤ Cαβ|z|n−|α|.

But this is a rather immediate consequence of the fact that in local coordinates, there ex-
ist smooth functions (Gij)1≤i,j≤n+1 defined in the patch ϕ(U) such that d2(x, x − z) =∑

i,j G
ij(x, x − z)zizj . Combining everything, we obtain that p ∈ S−1(Rn+1

x × Rn+1
ξ ) so

Π0 is a pseudodifferential operator of order −1. The same arguments allow to show that Πm

is also a ΨDO of order −1 for any m ≥ 0.
We now compute the principal symbol of Πm. Let us consider a smooth section f1 ∈

C∞(M,⊗mS T ∗M) defined in a neighborhood of x ∈M and f2 ∈ ⊗mS T ∗xM , then:

〈σm(x0, ξ)f1, f2〉x0 = lim
h→0

h−1e−iS(x0)/h〈Πm(eiS(x)/hf1), f2〉x0

= lim
h→0

h−1e−iS(x0)/h〈Ππ∗m(eiS(x)/hf1), π∗mf2〉L2(Sx0M),

where ξ = dS(x) 6= 0. Here, it is assumed that HessxS is non-degenerate. According to the
previous paragraph, we can only consider the integral in time between (−ε, ε), where ε > 0 is
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chosen small enough (less than the injectivity radius at the point x), namely:

〈σm(x, ξ)f1, f2〉x0

= lim
h→0

h−1

∫
Sn

∫ +ε

−ε
ei/h(S(γ(t))−S(x))π∗mf1(γ(t), γ̇(t))π∗mf2(x0, v)χ(t)dtdv

= lim
h→0

h−1

∫
Sn−1

(∫ π

0

∫ +ε

−ε
ei/h(S(γ(t))−S(x))π∗mf1(γ(t), γ̇(t))π∗mf2(x0, v)

sinn−1(ϕ)χ(t)dtdϕ
)

du

where χ is a cutoff function with support in (−ε, ε), γ is the geodesic such that γ(0) =

x, γ̇(0) = v and we have decomposed v = cos(ϕ)w+sin(ϕ)u with w = ξ]/|ξ| = dS(x)]/|dS(x)|,
u ∈ Sn−2. We apply the stationnary phase lemma [Zwo12, Theorem 3.13] uniformly in the
u ∈ Sn−2 variable. For fixed u, the phase is Φ : (t, ϕ) 7→ S(γ(t))−S(x) so ∂tΦ(t, ϕ) = dS(γ̇(t)).
More generally if Φ̃ : (t, v) 7→ S(γ(t))− S(x), then

∂vΦ̃(t, v) · V = dπ(dϕt(x, v) · V ), ∀V ∈ V.

Since (M, g) has no conjugate points, dπ(dϕt(x, v)) · V 6= 0 as long as t 6= 0 and V ∈ V \ {0}.
And dS(γ̇(0)) = dS(cos(ϕ)w + sin(ϕ)u) = cos(ϕ)|dS(x)| = 0 if and only if ϕ = π/2. So the
only critical point of Φ is (t = 0, ϕ = π/2). Let us also remark that

Hess(0,π/2)Φ =

(
HessxS(u, u) −|dS(x)|
−|dS(x)| 0

)
is non-degenerate with determinant −|ξ|2, so the stationary phase lemma can be applied and
we get: ∫ π

0

∫ +ε

−ε
ei/h(S(γ(t))−S(x0))π∗mf1(γ(t), γ̇(t))π∗mf2(x0, v) sinn−2(ϕ)dtdϕ

∼h→0 2πh|ξ|−1π∗mf1(x0, u)π∗mf2(x0, u).

Eventually, we obtain:

〈σm(x, ξ)f1, f2〉x0 =
2π

|ξ|

∫
{〈ξ,v〉=0}

π∗mf1(v)π∗mf2(v)dSξ(v),

where dSξ is the canonical measure induced on the (n− 2)-dimensional sphere

SξM := SxM ∩ {〈ξ, v〉 = 0} .

The result then follows from the following computation. We write E = TxM .
We can write f1 = jξfp + fs where fp ∈ ⊗m−1

S E∗, fs ∈ ker
(
ıξ|⊗mS T ∗xM

)
, where jξfp =

S(ξ ⊗ fp). Note that π∗m(jξfp)(v) = 〈ξ, v〉π∗m−1fp(v) and this vanishes on {〈ξ, v〉 = 0} (and
the same holds for f2). In other words, π∗mf1 = π∗mπker ıξf1 on {〈ξ, v〉 = 0}. We are thus left
to check that for f1, f2 ∈ ker ıξ,

Cn,m

∫
〈ξ,v〉=0

π∗mf1(v)π∗mf2(v)dSξ(v) =

∫
SE
π∗mf1(v)π∗mf2(v)dS(v),

for some constant Cn,m > 0. We will use the coordinates v′ = (v, ϕ) ∈ SE,ξ × [0, π] on SE
which allow to decompose v′ = sin(ϕ)v+ cos(ϕ)ξ]/|ξ|. Then the measure on SE disintegrates
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as dS = sinn−2(ϕ)dϕdSξ(v). Also remark that π∗mf(v + cos(ϕ)ξ]/|ξ|) = π∗mf(v). Then, if
Cn,m :=

∫ π
0 sinn−2+2m(ϕ)dϕ, we obtain:∫
〈ξ,v〉=0

π∗mf1(v)π∗mf2(v)dSξ(v)

= C−1
n,m

∫ π

0
sinn−2+2m(ϕ)dϕ

∫
〈ξ,v〉=0

π∗mf1(v)π∗mf2(v)dSξ(v)

= C−1
n,m

∫ π

0

∫
〈ξ,v〉=0

π∗mf1(sin(ϕ)v + cos(ϕ)ξ]/|ξ|)

× π∗mf2(sin(ϕ)v + cos(ϕ)ξ]/|ξ|) sinn−2(ϕ)dϕdSξ(v)

= C−1
n,m

∫
SE
π∗mf1(v′)π∗mf2(v′)dS(v′)

�

6.4.2. Main properties of the normal operator. The crucial property of the normal operator
Πm is that it is elliptic on solenoidal tensors.

Lemma 6.20. The operator Πm is elliptic on solenoidal tensors, that is there exists pseudo-
differential operators Q and R of respective order 1 and −∞ such that:

QΠm = πkerD∗ +R

Proof. We define

q̃(x, ξ) =

 0, on ran(jξ)
Cn,m
2π
|ξ|(πker ı

ξ]
πm∗π

∗
mπker ı

ξ]
)−1, on ker(ıξ])

and q(x, ξ) = (1 − χ(x, ξ))q̃(x, ξ) for some cutoff function χ ∈ C∞comp(T ∗M) around the zero
section. By construction, Op(q)Πm = πkerD∗ − R′ with R′ ∈ Ψ−1. Let r′ = σR′ and define
a ∼

∑∞
k=0 r

′k. Then Op(a) is a microlocal inverse for 1 − R′ that is Op(a)(1 − R′) ∈ Ψ−∞.
Since R′D = 0, we obtain that R′ = R′πkerD∗ and thus

Op(a) Op(q)︸ ︷︷ ︸
=Q

Πm = Op(a)(1−R′)πkerD∗ = πkerD∗ +R,

where R is a smoothing operator. �

We now study injectivity of the normal operator. From now on, we will add a subscript
sol to denote the fact that we consider solenoidal tensors, i.e. elements in kerD∗. The next
lemma shows that the s-injectivity of the X-ray transform is equivalent to that of the normal
operator Πm:

Lemma 6.21. Im is solenoidal injective if and only if Πm is injective on the space Hs
sol(M,⊗mS T ∗M),

for all s ∈ R.

Proof. There is a trivial implication: s-injectivity of Πm implies that of Im. Indeed, assume
f ∈ C∞sol(M,⊗mS T ∗M) is such that Imf = 0, then π∗mf = Xu for some u ∈ C∞(SM) by the
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smooth Livsic Theorem 5.4. But then Πmf = πm∗(Π +1⊗1)π∗mf = πm∗ΠXu = 0 by Lemma
4.11. Thus f = 0.

Let us now prove the converse. We fix s ∈ R. We assume that Πmf = 0 for some
f ∈ Hs

sol(M,Sm(T ∗M)). By ellipticity of the operator, we get that f ∈ C∞sol(M,Sm(T ∗M)).
And:

〈Πmf, f〉L2 = 〈Ππ∗mf, π∗mf〉L2 +

(∫
SM

π∗mfdµ

)2

= 〈(−∆ + 1)−sΠπ∗mf, π
∗
mf〉Hs +

(∫
SM

π∗mfdµ

)2

= 0.

By Lemma 4.11, since 〈Ππ∗mf, π∗mf〉 ≥ 0, we obtain that
∫
SM π∗mfdµ = 0. Moreover, (−∆ +

1)−sΠ is bounded and positive on Hs so there exists a square root R : Hs → Hs, that is a
bounded positive operator satisfying (−∆ + 1)−sΠ = R∗R, where R∗ is the adjoint on Hs.
Then:

〈(−∆ + 1)−sΠπ∗mf, π
∗
mf〉Hs = 0 = ‖Rπ∗mf‖2Hs

This yields (−∆ + 1)−sΠπ∗mf = 0 so Ππ∗mf = 0. By Lemma 4.11, there exists u ∈ C∞(SM)

such that π∗mf = Xu so f ∈ ker Im ∩ kerD∗. By s-injectivity of the X-ray transform, we get
f ≡ 0. �

In particular, the previous lemma directly implies the following, which was already known
since [DS03]:

Proposition 6.22. Let (M, g) be a smooth Anosov Riemannian manifold. Then, the kernel
of Im on C∞sol(M,⊗mS T ∗M) is finite dimensional.

Proof. By Lemma 6.21, s-injectivity of Im is equivalent to that of Πm, which is elliptic on
solenoidal tensors. Hence its kernel is finite-dimensional, see Proposition A.5. �

Another direct consequence of Lemma 6.21 and Theorem 6.20 is the following:

Theorem 6.23. If Im is solenoidal injective, then there exists a pseudodifferential operator
Q′ of order 1 such that: Q′Πm = πkerD∗ .

Proof. The operator Πm is elliptic of order −1 on kerD∗, thus Fredholm as an operator
Hs

sol(M,⊗mS T ∗M) → Hs+1
sol (M,⊗mS T ∗M) for all s ∈ R. It is selfadjoint on the Hilbert space

H
−1/2
sol (M,⊗mS T ∗M), thus Fredholm of index 0 (the index being independent of the Sobolev

space considered, see [Shu01, Theorem 8.1]), and injective, thus invertible onHs
sol(M,⊗mS T ∗M).

We multiply the equality QΠm = πkerD∗ +R on the right by Q′ := πkerD∗Π
−1
m πkerD∗ :

QΠmQ
′ = QΠmπkerD∗︸ ︷︷ ︸

=Πm

Π−1
m πkerD∗ = QπkerD∗ = Q′ +RQ′

As a consequence, Q′ = QπkerD∗ + smoothing so it is a pseudodifferential operator of order 1.
And Q′Πm = πkerD∗ . �

This yields the following stability estimate:
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Lemma 6.24. If Im is solenoidal injective, then for all s ∈ R, there exists a constant C :=

C(s) > 0 such that:

∀f ∈ Hs
sol(M,⊗mS T ∗M), ‖f‖Hs ≤ C‖Πmf‖Hs+1

We also obtain a coercivity lemma on the operator Πm.

Lemma 6.25. If Im is solenoidal injective, then there exists a constant C > 0 such that:

∀f ∈ H−1/2(M,⊗mS T ∗M), 〈Πmf, f〉 ≥ C‖πkerD∗f‖2H−1/2 .

Proof. The operator πm∗π∗m : ⊗mS T ∗xM → ⊗mS T ∗xM is positive definite and thus admits a
square root S(x) : ⊗mS T ∗xM → ⊗mS T ∗xM , self-adjoint and such that Sm(x) = πm∗π

∗
m. We

introduce the symbol b ∈ C∞(T ∗M) of order −1/2 defined by b : (x, ξ) 7→ χ(x, ξ)|ξ|−1/2S(x),
where χ ∈ C∞(T ∗M) vanishes near the 0 section in T ∗M and equal to 1 for |ξ| > 1 and define
B := Op(b) ∈ Ψ−1/2(M,⊗mS T ∗M), where Op is a quantization onM . Using that the principal
symbol of πkerD∗ is ıξ] , the inner product with ξ], we observe that Πm = πkerD∗B

∗BπkerD∗+R,
where R ∈ Ψ−2(M,⊗mS T ∗M). Thus, given f ∈ H−1/2(M,⊗mS T ∗M):

〈Πmf, f〉L2 = ‖BπkerD∗f‖2L2 + 〈Rf, f〉L2 (6.7)

By ellipticity of B, there exists a pseudodifferential operator Q of order 1/2 such that
QBπkerD∗ = πkerD∗ + R′, where R′ ∈ Ψ−∞(M,⊗mS T ∗M) is smoothing. Thus there is C > 0

such that for each f ∈ C∞(M,⊗mS T ∗M)

‖πkerD∗f‖2H−1/2 ≤ ‖QBπkerD∗f‖2H−1/2 + ‖R′f‖2
H−1/2 ≤ C‖BπkerD∗f‖2L2 + ‖R′f‖2

H−1/2 .

Since Lemma 6.25 is trivial on potential tensors, we can already assume that f is solenoidal,
that is πkerD∗f = f . Reporting in (6.7), we obtain that

‖f‖2
H−1/2 ≤ C〈Πmf, f〉L2 − C〈Rf, f〉L2 + ‖R′f‖2

H−1/2

≤ C〈Πmf, f〉L2 + C‖Rf‖H1/2‖f‖H−1/2 + ‖R′f‖2
H−1/2 .

(6.8)

Now, assume by contradiction that the statement in Lemma 6.25 does not hold, that is we
can find a sequence of tensors fn ∈ C∞(M,⊗mS T ∗M) such that ‖fn‖H−1/2 = 1 with D∗fn = 0

and
‖
√

Πmfn‖2L2 = 〈Πmfn, fn〉L2 ≤ ‖fn‖2H−1/2/n = 1/n→ 0.

Up to extraction, and since R is of order −2, we can assume that Rfn → v1 in H1/2 for some
v1, and R′fn → v2 inH−1/2. Then, using (6.8), we obtain that (fn)n∈N is a Cauchy sequence in
H−1/2 which thus converges to an element v3 ∈ H−1/2 such that ‖v3‖H−1/2 = 1 and D∗v3 = 0.
By continuity, Πmfn → Π2v3 in H1/2 and thus 〈Π2v3, v3〉 = 0. Since v3 is solenoidal, we
get
√

Πmv3 = 0, thus Π2v3 = 0. Note that Im is s-injective by assumption, thus Πm is also
injective by Lemma 6.21. This implies that v3 ≡ 0, thus contradicting ‖v3‖H−1/2 = 1. �

We now study surjectivity. The normal operator Πm is formally self-adjoint, elliptic
on solenoidal tensors and is thus Fredholm of index 0. As a consequence, Πm is injective on
solenoidal tensors if and only if it is surjective. We can even be more precise on this statement:
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Lemma 6.26. Im is solenoidal injective if and only if

πm∗ : C−∞inv (SM)→ C∞sol(M,⊗mS T ∗M)

is surjective.

Here, C−∞inv (SM) = ∪s≤0, H
−s
inv(SM) denotes the distributions which are invariant by the

geodesic flow. We note that this lemma was first stated in the literature in the case of simple
manifolds [PZ16].

Proof. Assume that πm∗ : C−∞inv (SM)→ C∞sol(M,⊗mS T ∗M) is surjective. Let f ∈ C∞sol(M,⊗mS T ∗M)

be such that Imf = 0. Then π∗mf = Xu for some u ∈ C∞(SM) by the smooth Livsic Theorem
5.4 and f = πm∗h for some h ∈ C−∞inv (SM) by assumption. Then:

0 = 〈Xh, u〉 = −〈h,Xu〉 = −〈h, π∗mf〉 = −〈πm∗h, f〉 = −‖f‖2

Thus f ≡ 0.
We now prove the converse. If Im is s-injective, then Πm is s-injective and thus surjective

on solenoidal tensors. Thus, given f ∈ C∞sol(M,⊗mS T ∗M), there exists u ∈ C∞sol(M,⊗mS T ∗M)

such that f = Πmu = πm∗Ππ
∗
mu, that is f = πm∗h for h = Ππ∗mu ∈ ∩s>0H

−s(SM). �

Eventually, we will need this last lemma which we leave as an exercise for the reader:

Lemma 6.27. Ππ∗m : H−s(M,⊗mS T ∗M)→ H−s(SM) is bounded, for any s > 0. By duality,
πm∗Π : Hs(SM)→ Hs(M,⊗mS T ∗M) is bounded too, for any s > 0.

6.4.3. Stability estimates for the X-ray transform. An useful consequence of the previous tools
is that we can derive stability estimates for the X-ray transform:

Lemma 6.28. There exists s0 ∈ (0, 1) and C, τ > 0 such that for all f ∈ C1(M,⊗mS T ∗M):

‖πkerD∗f‖Hs0 ≤ C‖Imf‖τ`∞(C)‖f‖
1−τ
C1

We did not try to optimize the constants in the previous Lemma; in particular, C1 regularity
could be lowered to some Cβ for 0 < β < 1.

Proof. Without loss of generality, we can always assume that f is solenoidal. By the approx-
imate Livsic Theorem 5.5, we can write π∗mf = Xu+ h, where ‖h‖Cα ≤ C‖Imf‖τ`∞(C)‖f‖

1−τ
C1 ,

for some α,C > 0. Applying the operator πm∗(Π + 1 ⊗ 1), we then obtain, for s < α:

‖f‖Hs−1 . ‖Πmf‖Hs , by Lemma 6.24,
= ‖πm∗(Π + 1 ⊗ 1)(Xu+ h)‖Hs

= ‖πm∗(Π + 1 ⊗ 1)h‖Hs , by Lemma 4.11,
. ‖h‖Hs , by Lemma 6.27,
. ‖h‖Cα ≤ C‖Imf‖τ`∞(C)‖f‖

1−τ
C1

�

7. The marked length spectrum

The section is devoted to one of the most famous geometric inverse problems on closed
manifolds: the Burns-Katok conjecture [BK85], also known as the marked length spectrum
rigidity conjecture.
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7.1. The Burns-Katok conjecture. We consider an Anosov Riemannian manifold (M, g).
We recall that C denotes the set of free homotopy classes on M . This set is in one-to-one
correspondance with the conjugacy classes of the fundamental group π1(M) and if (M, g) is
Anosov, there exists a unique closed geodesic γg(c) ∈ c in each free homotopy class c ∈ C.

Definition 7.1. The marked length spectrum of the Anosov manifold (M, g) is the map

Lg : C → R+, Lg(c) := `g(γg(c)),

where `g(γ) denotes the Riemannian length of the curve γ computed with respect to the metric
g.

Let MetAn be the space of (smooth) Anosov metrics on M and let Diff0(M) be the group
of smooth diffeomorphisms that are isotopic to the identity. It is clear that the map

MetAn 3 g 7→ Lg

is invariant by the action (by pullback) of Diff0(M), namely Lg = Lφ∗g whenever φ ∈
Diff0(M). An element [g] ∈ MetAn/Diff0(M) is called an isometry class. We are inter-
ested in the following conjecture, known as the Burns-Katok conjecture [BK85] or the marked
length spectrum rigidity conjecture11:

Conjecture 7.2. The map

MetAn/Diff0(M) 3 [g] 7→ L[g]

is injective.

This conjecture was proved on negatively-curved surfaces [Cro90, Ota90] and in some other
partial cases [Kat88, BCG95, Ham99] but remains open in full generality. Otal’s proof in
the two-dimensional case [Ota90] is remarkable insofar it combines in a clever and beautiful
way elements of the theory of two-dimensional negatively-curved Riemannian spaces. Un-
fortunately, it is out of reach of the present survey and we encourage the curious reader to
have a look at Wilkinson’s lecture notes [Wil14] where this is explained in great details. In
this section, we will mainly explain how the previous theory of X-ray transform brings new
and interesting (although partial) answers to the conjecture. In particular, we will prove the
following local version:

Theorem 7.3 (Guillarmou-L. ’18). Let (M, g0) be a smooth Anosov manifold and further
assume it is non-positively-curved if dim(M) ≥ 3. Then, there exists N, ε > 0 such that the
following holds. Let g be a metric such that ‖g − g0‖CN < ε and Lg = Lg0. Then [g] = [g0],
i.e. the metrics are isometric.

We also point out that similar results were then obtained on manifolds with hyperbolic
cusps by Bonthonneau and the author in the sequence of papers [GL19b, GL19c]. Before
proving Theorem 7.3, we study an easier version of the problem to which we will refer to as
linear or infinitesimal.

11Originally, it was only formulated for negatively-curved manifolds.
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7.2. Linear problem. The linear version of the Burns-Katok conjecture consists in looking
at a family (gs)s∈(−1,1) such that Lgs = Lg0 . If the conjecture is true, then one should be able
to find an isotopy (φs)s∈(−1,1) such that φ∗sgs = g0. We call this problem the infinitesimal
rigidity of the marked length spectrum and we say that a metric g0 is infinitesimally rigid if
this holds. The important remark is the following:

Lemma 7.4. We have:
d

ds
Lgs = 1/2× Igs2 (ġs),

where ġs = d
dsgs.

The proof is left as an exercise to the reader; it uses the fact that geodesics are critical
points of the length functional among a free homotopy class of curves. As a consequence, if
the metrics (gs)s∈(−1,1) share the same marked length spectrum, then we obtain:

Igs2 (ġs) = 0.

If all the metrics (gs)s∈(−1,1) are known to be solenoidal-injective, this implies that ġs = Dgsps,
for some ps ∈ C∞(M,T ∗M), where Dgs is the symmetric derivative induced by the metric gs.
By duality, ps can be identified with a vector field −Xs ∈ C∞(M,TM) and ġs = −LXsgs. As
a consequence, if (φs)s∈(−1,1) denotes the isotopy generated by the vector fields (Xs)s∈(−1,1),
then we obtain that φ∗sgs = g0. Note that solenoidal injectivity is an open property with
respect to the metric hence, s-injectivity of g0 implies that of all g in a Ck-neighborhood of g0

(for k large enough). This can be proved by using the fact that s-injectivity of Igm is equivalent
to that of Πg

m (by Lemma 6.21) and that the operator C∞(M,⊗2
ST
∗M) 3 g 7→ Πg

m ∈ Ψ−1 is
continuous (see [GKL19]). In other words, we obtain the following:

Lemma 7.5. If (M, g0) is an Anosov Riemannian manifold such that Ig02 is solenoidal injec-
tive, then it is infinitesimally rigid in the sense that any smooth family of metrics (gs)s∈(−1,1)

such that Lgs = Lg0 satisfies φ∗sgs = g0 for some isotopy (φs)s∈(−1,1).

In particular, as mentioned earlier, Ig02 is known to be solenoidal injective when (M, g)

is Anosov, under the additional assumption that the sectional curvature is nonpositive if
dim(M) ≥ 3.

7.3. Local geometry of the space of metrics. From now on, SM := SMg0 and the metric
g0 is fixed on M and assumed to be Anosov. We are interested in the local geometry of the
space of (smooth) Anosov metrics MetAn in a neighborhood of g0.

Passing through g0 are two important subspaces of MetAn (see Figure 5): one is O(g0) :={
φ∗g0 | φ ∈ Diff0(M)

}
, the orbit of g0 under the action of the group of smooth diffeomor-

phisms that are isotopic to the identity. The other one is g0 + kerD∗g0 , the space of solenoidal
tensors (with respect to g0) which is obviously affine. It can be easily checked that

Tg0O(g0) = {LV g0 | V ∈ C∞(M,TM)} = {Dg0p | p ∈ C∞(M,T ∗M)} .
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Met(M)

g0

O(g0) := fφ∗g0g

g

O(g)

ker δ

Tg0
O(g0)

φ∗g

Figure 5. A local picture of the geometry of the space of all metrics.

Moreover, as Tg0MetAn ' C∞(M,⊗2
ST
∗M), we see, using the decomposition of symmetric

tensors of Theorem 3.4 into potential/solenoidal parts, that:

Tg0MetAn ' C∞(M,⊗2
ST
∗M)

= Dg0C
∞(M,T ∗M)⊕ kerD∗g0 |C∞(M,⊗2

ST
∗M)

= Tg0O(g0)⊕ Tg0
(
g0 + kerD∗g0 |C∞(M,⊗2

ST
∗M)

)
,

that is the two (Fréchet) submanifolds O(g0) and g0 + kerD∗g0 |C∞(M,⊗2
ST
∗M) of MetAn are

transverse at g0. This is represented in Figure 5.
Moreover, it can be proved that the various orbits O(g) for g in a neighborhood of g0 are

all transverse to g0 + kerD∗g0 |C∞(M,⊗2
ST
∗M). This can be seen in the content of the following

Lemma who goes back to [Ebi68] (see also [GL19d]). We provide the proof in finite regularity
as it is easier and relies on the implicit function Theorem for Banach spaces (below CN,α

denotes the space of CN functions such that the N -th derivatives are α-Hölder continuous).
Nevertheless, it still holds in the smooth category (i.e. taking N = ∞) by applying the
Nash-Moser Theorem.

Lemma 7.6. Assume g0 is smooth. Let N ≥ 2, α ∈ (0, 1). Then, there exists ε > 0 such
that the following holds. For any metric g such that ‖g − g0‖CN,α < ε, there exists a (unique)
diffeomorphism isotopic to the identity φ, of regularity CN+1,α, such that D∗(φ∗g) = 0. The
metric φ∗g (of regularity CN,α) is called the solenoidal reduction of g.

Proof. Consider the map Ck+1,α(M,TM) 3 V 7→ eV := x 7→ expx(V (x)) ∈ Diffk+1,α(M)

(the exponential map is that induced by g0); it is a well-defined smooth diffeomorphism for
V ∈ U0 a small Ck+1,α-neighborhood of the zero section onto a neighborhood of the identity
in Diffk+1,α(M). We define

F1 : U0 × Ck,α(M,⊗2
ST
∗M)→ Ck−1,α(M,⊗2

ST
∗M), F1(V, f) = D∗g0(e∗V (g0 + f))
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and we want to solve locally the equation F1(V (f), f) = 0. Note that e∗V (g+f) ∈ Ck,α(M,⊗2
ST
∗M)

if V ∈ Ck+1,α(M,TM). However, there is a subtle problem here coming from the fact that F1

is not smooth in a neighborhood of (0, 0) but only differentiable. This would not prevent us
from applying the inverse function theorem, but the regularity of the map g 7→ φ would only
be C1. Indeed, if we take f 6= 0, then g := g0 +f ∈ Ck,α(M,⊗2

ST
∗M) and in local coordinates

(e∗V g)kl(x) = gij(eV (x))
∂eiV
∂xk

(x)
∂ejV
∂xl

(7.1)

As a consequence, by the chain rule, differentiating with respect to V makes a term Z 7→
deV (x)gij(dV e(Z)) ∈ Ck−1,α(M,⊗2

ST
∗M) appear and differentiating twice, we would obtain

a term in Ck−2,α(M,⊗2
ST
∗M) (so we would leave the Banach space Ck−1,α(M,⊗2

ST
∗M)).

However, remark that

eV ∗ ◦D∗g0 ◦ e
∗
V = D∗eV ∗g0 (7.2)

Thus, solving D∗g0e
∗
V (f + g0) = 0 is equivalent to solving D∗eV ∗g0(f + g0) = 0. Therefore, we

rather consider

F2 : U0 × Ck,α(M,⊗2
ST
∗M)→ Ck−1,α(M,⊗2

ST
∗M), F2(V, f) = D∗eV ∗g0(f + g0)

and we want to solve F2(V (f), f) = 0 in a neighborhood of (0, 0). The map F2 is smooth.
Indeed, it is immediately smooth in f , since it is linear and by (7.1), since g is smooth, it is
smooth in V .

Since dV e(0) = 1 (because the differential of the exponential map expx at 0 is the identity),
we see from (7.2) that dV F2(0, 0) = dV F1(0, 0). As a consequence, by the implicit func-
tion theorem, solving F2(V (f), f) = 0 in a neighborhood of (0, 0) amounts to proving that
dV F1(0, 0) is an isomorphism. The differential of F1 at (0, 0) is given by

dV F1(0, 0) · Z = D∗g0(LZg0) = 2×D∗g0Dg0(Z]),

for Z ∈ Ck+1,α(M,TM), where ] : TM → T ∗M is the musical isomorphism induced by the
metric g (and this maps Ck+1,α(M,TM) → Ck−1,α(M,⊗2

ST
∗M) which is coherent). But

D∗g0Dg0 is a differential operator of order 2 which is elliptic and injective — since Dg0 is,
by Lemma 3.3. Moreover, it is formally selfadjoint and its Fredholm index is thus equal to
0 by Proposition A.5 so it is also surjective, hence invertible. As a consequence D∗g0Dg0 :

Ck+1,α(M,T ∗M) → Ck−1,α(M,T ∗M) is an isomorphism. By the implicit function theorem
for Banach spaces, there exists a neighborhood U ⊂ U0 and a smooth map f 7→ V (f) (from
Ck,α(M,⊗2

ST
∗M) → Ck+1,α(M,⊗2

ST
∗M)) such that F2(V (f), f) = 0 for all f ∈ U (and

thus F1(V (f), f) = 0). Moreover, V (f) is the unique solution to F1,2(Z, f) = 0 in this
neighborhood. �

Note that one has to use Ck,α as the spaces Ck for k ∈ N are not well-suited for microlo-
cal analysis (or one has to resort to Hölder-Zygmund spaces Ck∗ ). The previous discussion
also shows that the moduli space MetAn/Diff0(M) (i.e. the space of orbits [g] = O(g)) can
be locally identified with g0 + kerD∗g0 . In other words, this last space is a local chart for
MetAn/Diff0(M) near [g0].
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7.4. Local rigidity via the geodesic stretch. We fix the metric g0 and consider a metric
g in a C2-neighborhood of g0. By Anosov structural stability (see [GKL19, Appendix B] for
instance), there exists an orbit-conjugacy of the geodesic flows i.e. a map

ψg : SMg0 → SMg

such that
dψg(Xg0(z)) = ag(z)Xg(ψg(z)), ∀z ∈ SMg0 , (7.3)

where ag is a function on SMg0 called the infinitesimal stretch. The map ψg is not unique
and ag is only defined up to a coboundary, namely a term of the form Xg0u. Recall that two
functions are said to be cohomologous if they differ by a coboundary. The infinitesimal stretch
is linked to the marked length spectrum by the following equality: for all c ∈ C,

Lg(c) =

∫
γg0 (c)

ag(ϕt(z))dt,

where z is an arbitrary point on γg0(c). Observe that the previous integral is indeed invariant
by adding a coboundary to ag. The following lemma is well-known (see the discussion in
[GKL19, Section 2.5] for instance):

Lemma 7.7. The following statements are equivalent:
(1) Lg = Lg0,
(2) The geodesic flows are conjugate i.e. there exists ψ̃g : SMg0 → SMg such that ψ̃g ◦

ϕg0t = ϕgt ◦ ψ̃g, for all t ∈ R,
(3) ag is cohomologous to the constant function 1.

Proof. (1)⇔ (3) If Lg = Lg0 then

Lg(c) =

∫ Lg0 (c)

0
ag(ϕt(z))dt = Lg0(c) =

∫ Lg0 (c)

0
1(ϕt(z))dt.

As a consequence, by the Livsic Theorem 5.4, ag − 1 = Xu for some Hölder-continuous
u ∈ Cα(SMg0). The converse is also immediate.

(2) =⇒ (1) is straightforward. Let us show that (3) =⇒ (2). First of all, the flows are
always conjugate up to a time reparametrization, namely:

ϕgκg(z,t)(ψg(z)) = ψg(ϕ
g0
t (z)), (7.4)

for all t ∈ R, z ∈ SMg0 , where

κg(z, t) =

∫ t

0
ag(ϕ

g0
s (z))ds.

As a consequence, if ag = 1 +Xu, then

κg(z, t) = t+ u(ϕg0t (z))− u(z),

and using (7.4):
ϕgt

(
ϕg−u(z) ◦ ψg(z)

)
= ϕg−u(ϕ

g0
t (z))

◦ ψg(ϕg0t (z)),

that is the flows are conjugate by z 7→ ϕg−u(z) ◦ ψg(z) =: ψ̃g(z). �
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Although these considerations seem to be only local (i.e. g close to g0) insofar as they rely
on the Anosov structural stability, one can prove that they are actually global and g does not
need to be taken close to g0. This is very specific to geodesic flows, see [GKL19, Appendix B]
for instance.

As a consequence, it is natural to consider the cohomology class of the infinitesimal stretch
minus one [ag − 1] as a faithful measure of the distance between the marked length spectra
of the metrics g0 and g. Let us give a more precise meaning to that. Given α ∈ R+ \ N, we
introduce the space of coboundaries Dα of regularity α, namely:

Dα(SMg0) := {Xg0u | u ∈ Cα(SMg0), Xg0u ∈ Cα(SMg0)} .

This is a closed subspace of Cα(SMg0) and we can therefore consider the quotient space
Cα(SMg0)/Dα(SMg0) endowed with the natural norm

‖[f ]‖Cα/Dα := inf
Xg0u∈Dα

‖f +Xg0u‖Cα ,

where [f ] denotes an element in Cα/Dα.
For g close to g0, we can look at the map

Ck(M,⊗2
ST
∗M) 3 g 7→ ag ∈ Cν(SM),

where ν > 0 is some fixed exponent and this map is known to be Ck−2 by [Con92, Proposition
1.1]. In particular, for k = 2, it admits a Taylor expansion:

ag − 1 = 0 + da|g=g0(g − g0) +OCν (‖g − g0‖2), (7.5)

and we have (see [GKL19, Lemma 3.3])

Lemma 7.8. da|g=g0(g − g0) is cohomologous to 1/2× π∗2(g − g0).

Proof. We consider c ∈ C and use both expressions for Lg(c):

Lg(c) =

∫ Lg0 (c)

0
ag(ϕ

g0
t (z))dt =

∫
γg(c)

g1/2dγg(c).

Taking the derivative with respect to g at g0, we obtain:∫ Lg0 (c)

0
dag=0(h)(ϕg0t (z))dt = 1/2×

∫
γg0 (c)

hdγg(c) + ∂g

(∫
γg(c)

g
1/2
0 dγg(c)

)
(h),

and the last term vanishes as geodesics are critical points of the length functional. This
completes the proof. �

We will prove the following which implies in turn Theorem 7.3.

Theorem 7.9. Let (M, g0) be an Anosov manifold such that Ig02 is injective. There exists
ν, ε,N, α > 0 such that the following holds. For any metric g such that ‖g−g0‖CN,α < ε, there
exists a CN+1,α-diffeomorphism φ, isotopic to the identity, such that

‖φ∗g − g0‖Hν/2−1 ≤ C‖[ag − 1]‖Cν/Dν .
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Proof of Theorem 7.9. First of all, we define g′ = φ∗g as the solenoidal reduction of g (with
respect to g0), i.e. D∗(g′ − g0) = 0, by Lemma 7.6. The following map is C2 (see [Con92])
and we can Taylor-expand it:

C2(M,⊗2
ST
∗M) 3 g 7→ ag ∈ Cν(SM),

and we obtain at g = g0, using (7.5) and Lemma 7.8:

ag′ − 1 = 0 + 1/2× π∗2(g′ − g0) +Xw + r,

where r = OCν (‖g′ − g0‖2C2). Hence, for an arbitrary f ∈ Cν such that Xf ∈ Cν , we obtain:

ag′ − 1 +Xf = 1/2× π∗2(g′ − g0) +X(w + f) + r

Observe that ag and ag′ are cohomologous since g and g′ have same marked length spectrum,
i.e. a′g = ag +Xf ′, hence:

ag − 1 +Xf = 1/2× π∗2(g′ − g0) +X(w + f − f ′) + r

Applying the operator π2∗(Π + 1⊗ 1), we obtain:

π2∗(Π + 1⊗ 1)(ag − 1 +Xf) = 1/2×Π2(g′ − g0) + π2∗(Π + 1⊗ 1)r.

Using Lemma 6.27, we obtain:

‖g′ − g0‖Hν/2−1 . ‖Π2(g′ − g0)‖Hν/2

. ‖π2∗(Π + 1⊗ 1)(ag − 1 +Xf)‖Hν/2 + ‖π2∗(Π + 1⊗ 1)r‖Hν/2

. ‖ag − 1 +Xf‖Hν/2 + ‖r‖Hν/2

. ‖ag − 1 +Xf‖Cν + ‖r‖Cν

. ‖ag − 1 +Xf‖Cν + ‖g′ − g0‖2C2

. ‖ag − 1 +Xf‖Cν + ‖g′ − g0‖Hν/2−1‖g′ − g0‖CN,α ,

for some N ≥ 0 large enough, α ∈ (0, 1), where the last inequality is obtained by interpolation.
Assuming ‖g′ − g0‖CN,α < ε is small enough, the second term on the right-hand side can be
swallowed on the left-hand side and we obtain:

‖φ∗g − g0‖Hν/2−1 ≤ C‖ag − 1 +Xf‖Cν

Since f was arbitrary, we can take the infimum over all such coboundaries Xf and we obtain
the desired result. �

7.5. Generalized Weil-Petersson metric on MetAn/Diff0(M). The operator Π2 also al-
lows to define a metric on the moduli space MetAn/Diff0(M):

Definition 7.10 (Generalized Weil-Petersson metric). Let [g] ∈ MetAn/Diff0(M) and [h] ∈
T[g]MetAn/Diff0(M). We introduce the symmetric bilinear form:

G[g]([h], [h]) := 〈Πg
2h, h〉L2 ,

where g is an element of the class [g] and h ∈ kerD∗g represents [h].

We leave it as an exercise to the reader to check that this is indeed well-defined, indepen-
dently of the choice of element g in the class [g].
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Lemma 7.11. G defines a smooth metric on MetAn/Diff0(M) called the generalized Weil-
Petersson metric.

Note that this is a metric on an infinite-dimensional space.

Proof. Smoothness is not trivial and follows from that of the map C∞(M,⊗2
ST
∗M) 7→ Πg

2 ∈
Ψ−1 is smooth. It was proved in [GKL19] that this map is indeed continuous but, inspecting
the proof, the same arguments also show smoothness. The fact that G is a metric is a mere
consequence of Lemma 6.25 i.e. G[g]([h], [h]) = 〈Πg

2h, h〉L2 ≥ C‖h‖2
H−1/2 . �

We now consider the specific case where M is an orientable surface of genus g ≥ 2. We de-
note by T (M) the Teichmüller space ofM , i.e. the space of hyperbolic metrics (with constant
curvature −1) quotiented by Diff0(M). This space is endowed with canonical metric called
the Weil-Petersson metric, see [Tro92, Chapter 5]. This is a smooth manifold diffeomorphic
to R6g−6 which can be seen as a natural submanifold of MetAn/Diff0(M).

Lemma 7.12. The restriction G|T (M) is equal to (a multiple of) the Weil-Petersson metric.

We refer to [GKL19] for a proof (based on [BCLS15]). The Weil-Petersson metric on T (M)

has been well-studied and some important properties are known. For instance, it is known
that this metric has negative sectional curvature, see [Ahl62] and [Tro92, Theorem 5.4.15]. In
the same vein, one can wonder if this still holds true for te generalized Weil-Petersson metric
G.

Question 7.13. Is the sectional curvature of G negative?

8. Inverse problems for connections

In this section, we study the inverse problem of recovering a connection from the knowledge
of its holonomy along closed geodesics.

8.1. Setting of the problem. Consider a vector bundle E → M equipped with a unitary
connection ∇E . We denote by C the parallel transport map along geodesics. More precisely, if
(x, v) ∈ SM , consider a geodesic segment γ : [0, L] 3 t 7→ π(ϕt(x, v)) with endpoints x− = x

and x+ = π(ϕL(x, v)). We then define:

C((x, v), t) : Ex− → Ex+ ,

as the parallel transport map along the geodesic γ with respect to the connection ∇E . An
equivalent point of view is to consider the lift (π∗E , π∗∇E) on SM . Then C is the cocycle over
the flow (ϕt)t∈R obtained by parallel transport (along the flowlines) with respect to π∗∇E , as
in §5.4

In the same spirit as for the marked length spectrum problem, one can look at the holonomy
induced by the connection on closed geodesics. More precisely, for each c ∈ C, we make an
arbitrary choice and consider a point xc ∈ γg(c) on the unique closed geodesic γg(c) ∈ c; we
denote by vc ∈ SxcM the unit vector generating γg(c). We look at the following map:

Hol∇E : C →
∏
c∈C

U(Exc), c 7→ C((xc, vc), `g(c)),
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which is nothing but the holonomy of the connection ∇E along all closed geodesics. We can
already introduce the following notion which will be important in the following:

Definition 8.1. Let E → M be a smooth vector bundle. We say that a connection ∇E is
transparent if Hol∇E = 1, i.e. the holonomy is trivial.

Of course, there may not be any transparent connections on a given vector bundle, as we
will see in Lemma 8.5. Note that if two connections ∇E1 and ∇E2 are gauge-equivalent12, then
the holonomies induced are not equal but conjugate. As a consequence, we will write Hol∇E1

∼
Hol∇E2

if there exists a (globally defined) map P ∈ C∞(SM,U(E)) such that Hol∇E1
(c) =

P (xc, vc)Hol∇E2
(c)P (xc, vc)

−1, for all c ∈ C. (Note that P is defined on SM and is therefore a
priori v-dependent. Our goal will be to prove it is not.)

γ x
−

x+

Ex
−

Ex+

f

Cγf

xc

γg(c)

Exc

f

Cγf

Figure 6. Parallel transport on a closed oriented surface.

The general geometric inverse problem is the following:

12Two connections are said to be gauge-equivalent if there exists p ∈ C∞(M,U(E)) such that for all sections
f ∈ C∞(M, E), one has

∇E2 (f) = p−1∇E1 (pf). (8.1)

In this case, parallel transport along the flowlines of (ϕt)t∈R satisfies the commutation relation:

C2(x, t) = p(ϕtx)−1C1(x, t)p(x).
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Question 8.2. To what extent does the holonomy along closed geodesics determine the con-
nection (up to a gauge equivalent factor)? More precisely, consider two unitary connections
∇E1,2 such that Hol(∇E1 ) ∼ Hol(∇E2 ). Does it imply that ∇E1 and ∇E2 are gauge-equivalent?

It is straightforward to observe that if a connection ∇E0 is transparent, then any gauge-
equivalent connection is also transparent so one can only expect to be able to reconstruct
the connection modulo a gauge-equivalent term. In the particular case where E = L is a line
bundle, the unitary group U(1) is Abelian and gauge-equivalent connections all induce the
same holonomy.

8.2. Line bundles. We consider the specific case where the vector bundle is a line bundle
L →M13 over M and (M, g) is assumed to be Anosov. The holonomy along closed geodesics
is simply given by a complex number (loosely speaking, the integral of the connection 1-form
along the closed geodesic), i.e. Hol∇L(c) ∈ C. We have the following result due to Paternain
[Pat09]:

Theorem 8.3 (Paternain ’09). Assume (M, g) is Anosov and let L →M be a Hermitian line
bundle over M . Let ∇L1,2 be two unitary connections on L. Assume that Hol∇L1

(c) = Hol∇L2
(c)

for all c ∈ C. Then ∇L1,2 are gauge-equivalent, that is to say there exists G ∈ C∞(M,U(1))

such that
∇L2 = ∇L1 +G−1dG

As we will see, the proof relies on the solenoidal injectivity of the geodesic X-ray transform
I1 studied in §6.1.

Proof. As ∇L1,2 are unitary connections, we can write ∇L2 = ∇L1 + iθ, where θ ∈ C∞(M,T ∗M)

is a real valued 1-form on M . Since the connections are transparent, we have∫
γg(c)

θ ∈ 2πZ, (8.2)

for all c ∈ C. We introduce the cocycle

C((x, v), t) := exp

(
i

∫ t

0
π∗1θ(ϕs(x, v))ds

)
∈ U(1), (8.3)

which satisfies the periodic orbit obstruction (see Definition 5.10) by (8.2). As a consequence,
by the smooth Livsic cocycle Theorem 5.11, there exists u ∈ C∞(SM,U(1)) such that

C((x, v), t) = u(ϕt(x, v))u(x, v)−1.

Differentiating with respect to t and evaluating at t = 0, we obtain:

i× π∗1θ = (Xu)u−1.

We now introduce the closed 1-form ω := du
iu ∈ C

∞(SM,T ∗(SM)). If π : SM → M denotes
the projection, then π∗ : H1(M) → H1(SM) is an isomorphism by the Gysin sequence (one
has to use here thatM cannot be the two-torus). As a consequence, we can write ω = π∗η+df ,

13We use the notation L rather than E for line bundles.
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for some harmonic 1-form η ∈ H1(M) and f ∈ C∞(SM). Applying the vector field X and
the commutation relation of Lemma 3.2, we obtain:

ω(X) = π∗1θ = π∗1η +Xf,

that is π∗1(θ − η) = Xf and thus I1(θ − η) = 0. By s-injectivity of the X-ray transform I1 on
Anosov manifolds [DS03], we obtain that θ− η = df ′ is exact. In particular, θ is closed. If we
fix a basepoint x0 ∈M and consider for x ∈M a geodesic γ joining x0 to x, then we set:

G(x) := exp

(
i

∫
γ
θdγ

)
,

and it can be checked that this definition is independent of γ (as θ is closed and
∫
γg(c) θ ∈ 2πZ

for all closed geodesic). Such a G ∈ C∞(M,U(1)) satisfies θ = dG/iG and the two connections
are gauge-equivalent. �

The proof is remarkably simple once one knows the s-injectivity of I1. By a little more work,
one can produce a stability estimate for this problem. We introduce the following distance on
the moduli space of gauge-equivalent connections:

d(∇L1 ,∇L2 ) := inf
G∈C∞(M,U(1))

‖∇L2 −
(
∇L1 +G−1dG

)
‖L∞(M,T ∗M). (8.4)

It can be checked that this is indeed a distance i.e. d(∇L1 ,∇L2 ) = 0 if and only if ∇L1 and ∇L2
are gauge-equivalent (see [CLb, Section 2]). We then have:

Theorem 8.4 (Cekic-L. ’20). Fix A > 0. There exists C,α, τ > 0 such that if ‖∇L2 −∇L1 ‖Cα ≤
A, then:

d(∇L1 ,∇L2 ) ≤ C × sup
c∈C

(
Lg(c)

−1|Hol∇L1
(c)Hol−1

∇L2
(c)− 1|

)τ
.

The proof of the previous Theorem is a little bit more involved than Theorem 8.3. It relies
on the microlocal framework introduced in §6 — in particular, the stability estimate for the
X-ray transform I1 of Lemma 6.28 —, and on the approximate Livsic cocycle Theorem 5.12.

Proof. The proof follows closely that of Theorem 8.3. Define iθ := ∇L2 − ∇L1 . Consider the
cocycle C with values in U(1) defined by (8.3). Consider ε > 0 such that

|C((x, v), t)− 1Lx,v | ≤ εT

for ϕT (x, v) = (x, v). By Theorem 5.12, we obtain u ∈ Cα(SM,U(1)) such that Xu ∈ Cα
(for some α > 0 depending on the dynamics) and:

C((x, v), t) = u(ϕt(x, v))C ′((x, v), t)u(x, v)−1,

where C ′ is the cocycle with values in U(1) generated by iR ∈ Cα(SM, u(1)) and ‖R‖Cα ≤
Cετ . Differentiating the previous relation with respect to t and evaluating at t = 0, we obtain:

i× π∗1θ = (Xu)u−1 + iR. (8.5)

Note that we may approximate u in Cα by uk ∈ C∞(SM), so that Xuk → Xu in Cα as well.
By setting u := |uk| and R := iθ − |uk|−1X|uk| for some k large, this shows that we may
assume u and R are smooth.
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We define as before the closed one form on SM :

ω :=
du

iu
.

Using that π∗ : H1(M) → H1(SM) is an isomorphism by the Gysin sequence, there is a
harmonic 1-form w and a smooth h, such that

ω = π∗η + df.

Applying ıX and using (8.5), we obtain

Xf = π∗1θ −R− π∗1η. (8.6)

We thus have I1(θ − η) = O(ετ ) and we can decompose θ − η = da + b (by Theorem 3.4),
where b ∈ kerD∗ and a is a function on M . Moreover, we have a control of a and b in the Cα

norm. Indeed, one has b = πkerD∗(θ − η) and πkerD∗ is a pseudodifferential operator of order
0 by Lemma 3.5. This implies that:

‖b‖Cα ≤ C‖θ − η‖Cα ≤ C(‖θ‖Cα + ‖η‖Cα).

By assumption, there is a constant A > 0 such that we know a priori that ‖θ‖Cα ≤ A. To see
‖η‖Cα = O(1) is bounded, we argue as follows. If Hk(M) denotes the set of harmonic k-forms,
the injectivity of I1 on solenoidal tensors for Anosov manifolds and finite dimensionality of
H1(M) implies there is a C = C(M, g, α) > 0 such that

‖h‖Cα ≤ C‖I1h‖`∞ , h ∈ H1(M).

Now (8.6) implies I1η = I1θ − I(R) and thus using that ‖θ‖Cα ≤ A and ‖R‖Cα = O(ετ ), we
obtain:

‖η‖Cα . ‖I1η‖`∞ = O(1).

Moreover, we have I1(da) = 0 so I1(b) = O(ετ ). We can now use Lemma 6.28 together with
an interpolation argument: this implies that there exists 0 < β < α and δ1 = δ1(α, β) > 0

such that:
‖b‖Cβ ≤ ‖I1(b)‖δ1`∞‖b‖

1−δ1
Cα ≤ εδ1τ × C,

This implies that θ − η = da+OCβ (εδ1τ ).
Now, by our assumption on θ:

min
k∈Z

∣∣∣ ∫
γ
η − 2kπ

∣∣∣ ≤ CεγτT, (8.7)

for some C > 0 and γ any closed geodesic of length T . We fix a basis of geodesic loops
γi ∈ H1(M ;C) in homology and a basis of harmonic 1-forms hi ∈ H1(M) such that

∫
γi
hj = δij .

By (8.7) we have ∫
γi

η = 2kiπ +O(εδ1τ )︸ ︷︷ ︸
:=ri

, ki ∈ Z.

Then, define η1 := η −
∑b1(M)

i=1 rihi so that for each i = 1, ..., b1(M):∫
γi

(η − η1) = 2kiπ.
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Hence we may define as before, for a fixed basepoint x0 ∈M :

G(x) := exp

(
i

∫
γ
(η − η1 + da)dγ

)
,

where γ is any path starting from x0 and x. We immediately see that

iθ = G−1dG+ i(b+ η1) = G−1dG+OCβ (εδ1τ ),

concluding the proof.
�

8.3. Transparent connections. We now study the particular case of transparent connec-
tions, namely connections without holonomy.

8.3.1. General results. First of all, we consider the general case whereM is a smooth manifold
carrying a transitive Anosov flow (ϕt)t∈R. We consider E →M, a smooth vector bundle with
unitary connection ∇E . Below, recall that X := ∇EX . The following result shows that not all
vector bundles can carry transparent connections:

Lemma 8.5. Assume that ∇E is transparent. Then E → M is trivial. More precisely, there
exists a global basis f1, ..., fr ∈ C∞(M, E) such that Xfi = 0.

The proof follows that of the classical Livsic Theorem 5.4 and we refer to [CLb, Section 4]
for further details.

Sketch of proof. Fix an arbitrary metric g on M. Consider a dense orbit O(x0) for some
x0 ∈ M. Consider (f1(x0), ..., fr(x0)) an orthonormal basis of Ex0 . Let xt = ϕt(x0) be the
point along the flowline and let fi(xt) ∈ Ext be the parallel transport along the flowline with
respect to the connection ∇E of the section fi(x0). We claim that the fi are Hölder-continuous
on O(x0) (with respect to the distance d on M). Indeed, consider x, x′ = ϕT (x) on O(x0)

which are close enough. Taking a small patch of coordinates U containing x and x′, one
can trivialize E over U . Using the Anosov closing Lemma, the segment S := (ϕt(x))t∈[0,T ]

can be approximated by a periodic orbit γ of length T ′′ generated by a point x′′ such that
d(x′, x′′)+d(x, x′′) = O(d(x, x′)). Then, following the argument of the classical Livsic Theorem
5.4 (see the proof), one shows that

C(x, T ) ' Cx→x′′ C(x′′, T ′′)︸ ︷︷ ︸
=1

Cx′′→x′ ,

where Cx→x′ denotes the parallel transport (with respect to ∇E) along the small segment
of geodesic (for the metric g) joining x to x′. As a consequence, this shows that C(x, T ) =

1+O(d(x, x′)) (using our trivialization, we can always see C(x, T ) as a matrix in U(r)) and that
the sections fi defined in this way by parallel transport are Hölder-continuous. The existence of
a global orthonormal basis f1, ..., fr shows that E →M is trivial. Moreover, each fi is Hölder
continuous and satisfies Xfi = 0. By Lemma 4.11, this implies that fi ∈ C∞(M, E).14 �

14We are cheating a bit here: if X preserves a smooth measure dµ, then this is indeed Lemma 4.11. If not,
one has to use more sophisticated tools, see [Jou86, NT98, GL].
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We will apply this Lemma withM := SM when (M, g) is Anosov and the vector bundle is
a pullback π∗E → SM . In the specific case where (M, g) has negative curvature, the previous
Lemma 8.5 combined with Lemma 6.12 (finiteness of the degree of solutions to cohomological
equations) implies that the fi’s all have finite degree. Under the extra-assumption that the
connection ∇E has no CKTs, this implies that they are of degree 0, as follows from the
discussion at the end of §6.1. If this is the case, then the fi’s can be identified with smooth
sections on the base i.e. fi ∈ C∞(M, E) and the equation Xfi = 0 is nothing but ∇Efi = 0.
In other words, the sections are all parallel and (E ,∇E) is the trivial flat bundle (Cr ×M,d)

equipped with the trivial connection. We have just proved:

Lemma 8.6. Assume (M, g) has negative curvature and E → M is a smooth vector bundle
equipped with a unitary connection ∇E . If ∇E is transparent and has no CKTs, then (E ,∇E) '
(Cr ×M,d).

8.3.2. Examples of transparent connections. There are a lot of examples of transparent vector
bundles on surfaces and on can even classify them [Pat09]. First of all, if (M, g) is an oriented
Anosov surface, then (TM,∇LC) (the Levi-Civita connection) is transparent. This can be
fairly easily seen on a picture (see Figure 7).

xc

γg(c) Txc
M

Figure 7. Parallel transport on a closed oriented surface is always trivial along closed geodesics.

The conformal class (g) :=
{
e2ϕg | ϕ ∈ C∞(M)

}
defines a complex structure on M i.e.

an atlas (Uα, φα), with Uα ⊂ C and φα : Uα → φα(Uα) ⊂ M such that the transition maps
φαβ := φ−1

β φα are biholomorphisms (when they are defined), see [Tro92, Chapter 1]. As a
consequence, M carries a canonical line bundle κ which is spanned in local coordinates by
the section dz. The Levi-Civita connection induces a connection on κ (still denoted by ∇LC)
and it is easy to prove (using that TM is transparent) that κ is also transparent. Of course,
κ equipped with ∇LC is not isomorphic to the trivial line bundle with the trivial connection,
which also shows that there are indeed non-trivial examples of transparent connections. In
the same vein, any vector bundle constructed out of κ will also be transparent, for instance
κ−1⊕ κ (here κ−1 denotes κ∗ the dual line bundle, following the usual conventions). One can
even prove the following (see [Pat09]):
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Lemma 8.7. If (M, g) is an Anosov surface and (E ,∇E) is transparent, then c1(E) is divisible
by 2g − 2 (the Euler characteristic of M).

The proof is a simple application of the Gysin sequence. Actually, one can even go further
and there is a classification Theorem for transparent connections on negatively-curved sur-
faces (see [Pat09, Theorem B]). Despite a satisfying description of transparent connections on
surfaces, the higher dimensional case is still not very well understood. In particular, it is not
even clear if there are examples of non-trivial transparent connections in higher dimensions.

Question 8.8. Are there examples of transparent connections (E ,∇E) that are not isomorphic
to the trivial bundle (with trivial connection) when dim(M) ≥ 3?

8.4. Opaque connections. This paragraph is a preparation for the discussion of §8.5 on the
holonomy problem in higher rank.

8.4.1. General discussion. In this paragraph, we go back to the general case of a vector bundle
E →M over a smooth manifold carrying an Anosov flow (ϕt)t∈R and introduce the notion of
opaque connections. Once again, keeping in mind the geodesic caseM = SM , we will assume
for the sake of simplicity that X preserves a smooth measure dµ.

Definition 8.9 (Invariant subbundles). We say that a smooth vector subbundle F ⊂ E is
invariant (with respect to the flow (ϕt)t∈R and the connection ∇E) if for any x ∈M, f ∈ Fx,
one has C(x, t)f ∈ Fϕt(x) for all t ∈ R.

Opaque connections are such that parallel transport along flowlines of (ϕt)t∈R does not
preserve any invariant subbundles (except the trivial ones E and {0}):

Definition 8.10 (Opaque connections). Let M be a smooth manifold carrying an Anosov
flow (ϕt)t∈R and E → M be a smooth vector bundle. We say that a connection ∇E on E is
opaque if any invariant subbundle F ⊂ E is trivial i.e. F = E or {0}.

It will be convenient to work with the connection ∇End(E) induced by ∇E on the vector
bundle End(E)→M. This connection si defined in the following way: if f ∈ C∞(M, E) and
u ∈ C∞(M,End(E)), then

∇E(uf) = ∇End(E)(u)f + u∇Ef. (8.8)

Since ∇E is assumed to be unitary, we have ∇End(E) is unitary and X preserves dµ, so ∇End(E)
X

is formally skew-adjoint. As a consequence, the Pollicott-Ruelle resonant states of ∇End(E)
X

at 0 are smooth, as follows from the discussion of §4.4. Moreover, they always contain the
section 1E because

∇End(E)
1E = 0.

We want to investigate what are the other resonant states at 0 of ∇End(E)
X and what does their

existence imply. The following observations are immediate:

Lemma 8.11. The following hold for a subbundle F ⊂ E:
(1) If F is invariant, then so is F⊥ (defined pointwise by taking the orthogonal subspace).
(2) F is invariant if and only if for all f ∈ C∞(M,F), ∇EXf ∈ C∞(M,F).
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(3) F is invariant if and only if ∇End(E)
X ΠF = 0, where ΠF denotes the pointwise orthog-

onal projection onto F .

Proof. (1) Assume F is invariant and consider x ∈ M and f2 ∈ F⊥x . For t ∈ R, consider
f ′1 ∈ Fϕt(x); since F is invariant, it can be written as f ′1 = C(x, t)f1, for some f1 ∈ Fx. Then:

〈f ′1, C(x, t)f2〉Fϕtx = 〈C(x, t)f1, C(x, t)f2〉Fϕtx = 〈f1, f2〉Fx = 0,

and thus C(x, t)f2 ∈ F⊥ϕt(x), that is F
⊥ is invariant.

(2) Assume that F is invariant. Consider f1 ∈ C∞(M,F) and x ∈ M. Consider f2 ∈ F⊥x
and extend f2 by parallel transport along (ϕt(x))t∈(−ε,ε) for some ε > 0. By the first item, f2

is a section of F⊥. Thus:

X · 〈f1, f2〉E(x) = 0 = 〈∇EXf1, f2〉Ex + 〈f1,∇EXf2︸ ︷︷ ︸
=0

〉Ex ,

and thus in particular 〈∇EXf1, f2〉Ex = 0. Conversely, assume F is a subbundle of E such
that for all f1 ∈ C∞(M,F), ∇Xf1 ∈ C∞(M,F). This is also true for F⊥: indeed, if f2 ∈
C∞(M,F⊥), then 〈f1,∇Xf2〉E = X · 〈f1, f2〉E − 〈∇Xf1, f2〉E = 0, i.e. ∇Xf2 ∈ C∞(M,F⊥).
Now, consider x0 ∈M, a local chart Ux0 around x0, and a local orthonormal frame (e1, ..., er)

of E|Ux0 = Ux0 × Crsuch that (e1, ..., ek) is a frame for F|Ux0 and (ek+1, ..., er) a frame for
F⊥|Ux0 . On Ux0 , the connection can be written as ∇E = d + Γ. We claim that for ev-
ery x ∈ Ux0 , Γ(X)(Fx) ⊂ Fx. Indeed, consider f =

∑k
i=1 fiei ∈ Fx and smooth functions

f̃1, ..., f̃k defined around x0 such that df̃i(x) = 0 and f̃i(x) = fi, and set f̃ :=
∑k

i=1 f̃iei. Then
∇EX f̃(x) = Γ(X)f̃(x) = Γ(X)f ∈ Fx by assumption. Analogously, Γ(X)(F⊥x ) ⊂ F⊥x for every
x ∈ Ux0 . We then obtain that for f ∈ Ex and x ∈ Ux0 , writing f(t) := C(x, t)f = (f1(t), f2(t))

with (f1(t), 0) ∈ Fϕt(x), (0, f2(t)) ∈ F⊥ϕt(x), we have two separate differential equations for the
parallel transport: ḟ1(t) = −ΓF (t)f1(t), ḟ2(t) = −ΓF⊥(t)f2(t). As a consequence, if f2(0) = 0,
then f2(t) = 0 for all t. This proves the claim.

(3) Assume F is invariant. Then any f ∈ C∞(M, E) can be decomposed as f = f1 + f2,
where f1 = ΠFf, f2 = ΠF⊥f and by the second item:

(∇End(E)
X ΠF )f = ∇EX(ΠFf)−ΠF (∇EXf) = ∇EXf1 −ΠF (∇EXf1︸ ︷︷ ︸

∈F

+∇EXf2︸ ︷︷ ︸
∈F⊥

) = ∇EXf1 −∇EXf1 = 0.

Conversely, if ∇End(E)
X ΠF = 0, then for any f ∈ C∞(M,F), one has

0 = (∇End(E)
X ΠF )f = ∇EXf −ΠF (∇EXf),

that is ∇EXf ∈ C∞(M,F) so F is invariant by the second item. �

If u ∈ C∞(M,End(E)), then u = uR+uI , where uR := u+u∗

2 is hermitian and uI := u−u∗
2 is

skew-Hermitian. Since ∇End(E)
X (u∗) = (∇End(E)

X u)∗, one obtains that ∇End(E)
X u = ∇End(E)

X uR +

∇End(E)
X uI is the decomposition into Hermitian and skew-Hermitian parts of ∇End(E)

X u. Thus,
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∇End(E)
X u = 0, if and only if u = u1 + iu2, where ∇End(E)

X uj = 0 and u∗j = uj for j = 1, 2. In
other words,

ker(∇End(E)
X )C =

(
ker(∇End(E)

X ) ∩ ker(•∗ − 1E)
)
R
⊕i×

(
ker(∇End(E)

X ) ∩ ker(•∗ − 1E)
)
R
, (8.9)

where the subscript R or C indicates that it is seen as an R- or C-vector space. We have the
following picture:

Lemma 8.12. If u ∈ ker(∇End(E)
X ), u = u∗, then:

• At each point x ∈ M, there exists a smooth orthogonal splitting Ex = ⊕ki=1Ei(x) such
that each Ei is invariant and Ei →M is a well-defined subbundle of E →M,
• For all x ∈ M, u(x) =

∑k
i=1 λiΠi(x), where Πi(x) is the orthogonal projection onto

Ei (with kernel ⊕kj=1,j 6=iEi), λi are the distinct eigenvalues of u,

• Each projection satisfies ∇End(E)
X Πi = 0.

Proof. Consider a dense orbit O(x0), and a basis (ei)
r
i=1 of E|O(x0) that is invariant by parallel

transport along the orbit. Then u can be written as u =
∑r

i,j=1 λije
∗
i ⊗ ej for some smooth

functions λij ∈ C∞(O(x0)) and:

∇End(E)
X u =

r∑
i,j=1

Xλije
∗
i ⊗ ej +

r∑
i,j=1

λij(∇Xei)∗ ⊗ ej +

r∑
i,j=1

λije
∗
i ⊗∇Xej

=
r∑

i,j=1

Xλije
∗
i ⊗ ej = 0,

thus λij are constant along O(x0). This implies that the distinct eigenvalues of u are constant
along O(x0) and thus constant onM (the eigenvalues counted with multiplicity are continuous
onM, thus uniformly continuous sinceM is compact; since they are constant on a dense set,
they are constant everywhere). We denote the distinct ones by λ1, ..., λk and introduce for all
x ∈M:

Πi(x) :=
1

2πi

∫
γi

(u(x)− λi1E)−1dλ,

where γi is a small (counter clockwise oriented) circle around λi. One has: u =
∑

i λiΠi.
Observe that

∇End(E)
X Πi = − 1

2πi

∫
γi

(u(x)− λi1E)−1
(
∇End(E)
X (u(x)− λi1E)

)
(u(x)− λi1E)−1dλ = 0.

�

We have the following characterization of opaque connections:

Lemma 8.13. The connection ∇E is opaque if and only if the Pollicott-Ruelle resonant states
of ∇End(E)

X are reduced to 1E i.e. ker(∇End(E)
X |Hs±) = C · 1E .

Proof. “ =⇒ ” Assume that the connection is opaque and ker(∇End(E)
X |Hs±) 6= C · 1E , then one

can consider 0 6= u ∈ ker(∇End(E)
X |Hs±) which is orthogonal to C · 1E (i.e. its trace vanishes

everywhere onM).
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Taking its self-adjoint or i times the skew-adjoint part, by the previous discussion we
may additionally assume u∗ = u and u 6= 0. By Lemma 8.12, it can be decomposed as
u =

∑k
i=1 λiΠi, where each Πi is the orthogonal projection corresponding to an invariant

subbundle Ei → M, i.e. ∇End(E)
X Πi = 0. Observe that since Tr(u) = 0, this decomposition

cannot be the trivial one i.e. E = E ⊕⊥ {0} (in which case u would be a multiple of 1E). Thus,
E1 is an invariant subbundle which is neither {0} nor E which contradicts the fact that the
connection is opaque.

“ ⇐=” Conversely, if the connection is not opaque, then it admits an invariant subbundle
F and E = F ⊕⊥ F⊥ is an invariant decomposition. The orthogonal projection ΠF satisfies
∇End(E)
X ΠF = 0 by Lemma 8.11, thus ker(∇End(E)

X |Hs±) 6= C · 1E . �

8.4.2. Geodesic case. We now consider the case whereM := SM , (M, g) is Anosov and X is
the geodesic vector field. First of all, we have:

Theorem 8.14 (Cekic-L. ’20). Let (M, g) be an Anosov Riemannian manifold and E → M

be a smooth vector bundle. Then, for a generic unitary connection ∇E on E, the pullback
connection π∗∇E on π∗E → SM is opaque (with respect to the geodesic flow).

As a consequence, if (M, g) is Anosov, we say that a connection is generic if it is opaque.
The proof of the previous Theorem is out of scope of the present survey and we refer to [CL20]
for a proof. In negative curvature, this is a consequence of the stronger result:

Theorem 8.15 (Cekic-L. ’20). Let (M, g) be a negatively-curved Riemannian manifold and
E → M be a smooth vector bundle. Then, for a generic unitary connection ∇E on E, the
induced connection ∇End(E) on End(E)→M has no twisted CKTs (except the trivial one 1E).
In particular, π∗∇E is opaque on SM .

Proof. Generic absence of twisted CKTs for the induced connection∇End(E) is proved in [CL20,
Theorem 1.3] and relies on the notion of pseudodifferential operators of uniform divergence type
(see [CL20, Definition 3.3]). As this is a bit out of scope of the present survey, we omit the
proof. We claim that absence of twisted CKTs for ∇End(E) implies that the connection is
opaque. Indeed, if not, then by Lemma 8.13, there is a smooth Pollicott-Ruelle resonant state
u 6= 0 and u /∈ C · 1E at 0 for the operator (π∗∇End(E))X i.e. (π∗∇End(E))Xu = 0. By Lemma
6.12, deg(u) <∞, thus u = u0 + ...uN and X+uN = 0 (where X := (π∗∇End(E))X). Absence
of twisted CKTs implies that N = 0 and u0 = c · 1E for some constant c 6= 0. This is a
contradiction. �

8.5. General results in higher rank. We now discuss the general Question 8.2 in higher
rank, namely does the holonomy of a connection over closed geodesics determine the connection
up to a gauge-equivalent factor? The first answer one can come up with is negative: in
[Pat11], Paternain shows that if (M, g) is a negatively-curved surface, on the trivial bundle
C2 × M → M , there are continuous families of non-gauge equivalent connections that are
transparent. This already shows that the situation in higher rank (i.e. rank(E) ≥ 2) is
dramatically different than for line bundles (see Theorem 8.3). As a consequence, without any
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further assumption on the connections, one cannot expect similar results to Theorem 8.3 and
8.4 to hold.

Nevertheless, there is some hope to obtain a local result for a generic connection, and this is
where the results of §8.4.2 come into play. In the following, given a negatively-curved manifold
(M, g), we will say that a connection is generic if the induced connection on End(E) → M

has no twisted CKTs, see Theorem 8.15.

Theorem 8.16 (Guillarmou-Paternain-Salo-Uhlmann ’16, Cekic-L. ’20). Let (M, g) be a
negatively-curved manifold and E → M be a smooth vector bundle equipped with a generic
unitary connection ∇E0 . Then, there exists ε > 0, k ∈ N such that the following holds: if
‖∇E −∇E0‖Ck(M,T ∗M⊗End(E)) < ε and Hol∇E ∼ Hol∇E0

, then ∇E and ∇E0 are gauge-equivalent.

Proof. We denote by C0 (resp. C) the cocycle induced by the parallel transport along flowlines
of (ϕt)t∈R with respect to π∗∇E0 (resp. π∗∇E). By the smooth Livsic cocycle Theorem 5.11,
we obtain the existence of u ∈ C∞(SM,U(π∗E)) such that:

C0(z, t) = u(ϕtz)C(z, t)u(z)−1.

Evaluating on a section f ∈ C∞(SM, E), applying (π∗∇E0 )X and then taking t = 0, we obtain:

0 =
(

(π∗∇End(E)
0 )Xu

)
u−1f + u(π∗∇E0 )X

(
C(·, t)u−1f

)
|t=0

=
(

(π∗∇End(E)
0 )Xu

)
u−1f + u(π∗∇E + (π∗∇E0 − π∗∇E))X

(
C(·, t)u−1f

)
|t=0

=
(

(π∗∇End(E)
0 )Xu

)
u−1f + u (π∗∇E0 − π∗∇E)X︸ ︷︷ ︸

=π∗1A

u−1f,

where A := ∇E −∇E0 . In other words, we obtain:

(π∗∇End(E)
0 )Xu− u · π∗1A = 0, (8.10)

Observe that we can introduce the connection DA on End(E) → M defined by DAu :=

∇End(E)
0 u− uA and (8.10) is nothing but:

(π∗DA)Xu = 0.

This is a twisted cohomological equation. By Lemma 6.12, we know that u has finite degree.
Moreover, by assumption ∇E0 is generic and thus ∇End(E)

0 has no twisted CKTs of degree
m ≥ 1. By mere continuity, this also implies that DA has no twisted CKTs of degree m ≥ 1

as long as A is small enough in some Ck(M,T ∗M ⊗E) (for k ≥ 2). Thus u is of degree 0 and
(8.10) can be rewritten as

∇End(E)
0 u− uA = 0,

that is the connections are gauge-equivalent. �

It seems that the right assumption for the previous Theorem to hold would be that of an
Anosov manifold (M, g) endowed with a generic connection ∇E0 i.e. such that π∗∇E0 is opaque,
see Theorem 8.14. Nevertheless, this is still an open question at the moment.
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Question 8.17. Can one prove a similar statement to that of Theorem 8.16 with the sole
assumptions that (M, g) is Anosov and ∇E0 is generic, i.e. the induced connection ∇End(E)

0 is
opaque?

We end this paragraph, with a stability estimate for this problem, in the same vein as
Theorem 8.4, and which can be found in [CLb]. First of all, we introduce a distance on
cocycles, up to conjugacy:

dist(C1, C2) := inf
p∈C∞(SM,U(π∗E))

sup
z:ϕT z=z

1/T×‖C1(z, T )
(
p(z)C2(z, T )p(z)−1

)−1−1E‖z (8.11)

It is not clear wether this infimum is achieved. Nevertheless, if dist(C1, C2) < ε then there
exists a unitary p ∈ C∞(M,U(π∗E)) such that

‖C1(z, T )
(
p(z)C2(z, T )p(z)−1

)−1 − 1E‖z < εT,

for all T -periodic points z ∈ SM . We now introduce a distance on the moduli space of
connections up to gauge-equivalence which is similar to what we did already for line bundles
(see (8.4)):

d(∇E1 ,∇E2 ) := inf
p∈C∞(M,U(E))

‖p−1∇End(E)
1 p+ (∇E1 −∇E2 )‖L∞ .

We then have:

Theorem 8.18 (Cekic-L. ’20). Let (M, g) be a negatively-curved manifold and E → M be
a smooth vector bundle equipped with a generic unitary connection ∇E0 . Then, there exists
τ, ε, C > 0, k ∈ N such that the following holds: if ‖∇E −∇E0‖Ck(M,T ∗M⊗End(E)) < ε, then:

d(∇E0 ,∇E) ≤ C × dist(C0, C)τ ,

The idea of proof is more involved than the line bundle case (see Theorem 8.4) and uses
in a quite tricky way the theory of Pollicott-Ruelle resonances. We refer to [CLb] for further
details.

8.6. Transparent manifolds. We now discuss a very particular case of transparency. We
restrict ourselves to the study of the vector bundle (TM,∇LC) endowed with the Levi-Civita
connection and introduce the following terminology:

Definition 8.19. We say that the manifold (M, g) is transparent if the tangent vector bundle
(TM,∇LC) equipped with the Levi-Civita connection is transparent.

Of course, any oriented surface is transparent, see Figure 7. In higher dimensions, flat tori
are transparent for instance. One can legitimately conjecture that there are no transparent
manifolds in negative curvature, and more generally, as long as the geodesic flow is Anosov, in-
sofar as the chaotic properties of the flow should generate holonomy in the transverse direction
to the flow.

Conjecture 8.20. Assume (M, g) is an Anosov manifold of dimension ≥ 3. Then, (M, g) is
not transparent.

It is straightforward to check the following:
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Lemma 8.21. A transparent manifold is 2−,4− or 8−dimensional.

Proof. Indeed, if the manifold is transparent, then π∗TM → SM is trivial by Lemma 8.5
and trivialized by a global (e1, ..., en) such that ei ∈ C∞(SM, π∗TM), (π∗∇)Xei = 0 and
the ei are pointwise orthogonal (by Lemma 4.12). Observe that the tautological section
s(x, v) := v is always in the kernel of X := (π∗∇)X and so we can always assume that
e1 = s, and e2(x, v), ..., en(x, v) are orthogonal to v. As a consequence, for fixed x, the vector
fields (e2(x, ·), ..., en(x, ·)) are tangent to the (n − 1)-dimensional sphere SxM and pointwise
orthogonal. This implies that the (n−1)-dimensional sphere is parallelizable, hence n−1 = 1, 3

or 7. �

For the moment, Conjecture 8.20 is an open question but a first step could be to study the
case of negatively-curved manifolds. Also observe that non-transparency is an open condition
(in the set of C2 metrics). The only cases that are known are the following (see [CLa])

Theorem 8.22 (Cekic-L. ’20). Let (M, g0) be a hyperbolic metric on a 4- or 8-manifold.
Then, there is an open C2-neighborhood of g0 such that there are no transparent manifolds in
this neighborhood.

The proof is rather simple although non elementary and relies on the following crucial fact
(recall that X := (π∗∇)X):

Lemma 8.23. If X has no CKTs of degree m ≥ 2, then (M, g) is not transparent.

Proof. The absence of CKTs of degree ≥ 2 imply that the ei are of degree at most one. We
now show that they are of degree exactly one, namely they have no zeroth Fourier mode in
their spectral decomposition. We argue by contradiction, and consider f ∈ C∞(SM, π∗TM)

such that Xf = 0. Such a f has Fourier degree ≤ 1. Since X acts diagonally on odd/even
Fourier modes, we can write f = f0 + f1 and Xf0 = Xf1 = 0. Now, f0 can be identified
with a section f0 ∈ C∞(M,TM) and the equation Xf0 can be rewritten as ∇f0 = 0. Using
the musical isomorphism ] : TM → T ∗M , f0 can be identified with a one-form α such that
∇α = 0. Hence: π∗2∇α = Xπ∗1α = 0. By ergodicity of the geodesic flow, this implies that
π∗1α is constant but since π∗1α(x,−v) = −π∗1α(x, v), this implies that α ≡ 0. Hence f = f1 is
a pure mode of degree 1.

As a consequence, the section ei for i ≥ 2 are of pure degree 1. It is easy to see that
this implies the existence of section Ri ∈ C∞(M,End(TM)) such that ei(x, v) = Ri(x)v,
for all (x, v) ∈ SM . Moreover, using some ingredients from Clifford algebra theory, one can
prove that Xei = 0 actually implies that the Ri are parallel, namely ∇End(TM)Ri = 0. As
a consequence, the triple (R2, R3, R2R3) endows (M, g) with the structure of a hyperkähler
manifold and this implies that the manifold is Ricci-flat (see [CLa, Section 2.1] for instance).
Hence it cannot be negatively-curved. �

In order to prove Theorem 8.22, we indeed prove that in the case of a hyperbolic manifold,
there are no CKTs of degree m ≥ 2 for the Levi-Civita connection. The proof simply relies on
Lemma 6.13 as one can compute in an explicit fashion in this case the norm ‖F TM‖L∞ for a
hyperbolic manifold. Nevertheless, one can legitimately believe that this Lemma 6.13 is not
sharp and that one could prove that there are no CKTs for this connection of degree m ≥ 2.
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9. Open questions

We conclude this survey by summing up all the open questions:

On the Livsic theorem:

• Can one prove an approximate version of the Livsic theorem (both in the Abelian case
or in the cocycle case) in high regularity?
• Can one prove a positive version of the Livsic theorem (in the Abelian case) in high
regularity?

On the marked length spectrum:

• Can one prove the global rigidity of the marked length spectrum on Anosov surfaces?
on negatively-curved manifolds? on Anosov manifolds?
• What can be said about the (infinite-dimensional) moduli space of isometry classes
endowed with the general Weil-Petersson metric? Does it have negative sectional
curvature for instance?

On Anosov manifolds:

• Are there no CKTs on the trivial line bundle of Anosov manifolds?
• Let E → M be a vector bundle over the Anosov manifold (M, g) equipped with a
unitary connection ∇E and let X := (π∗∇E)X . Does any smooth element in ker(X)

has finite Fourier degree?

In particular, a positive answer to these two questions would imply the injectivity of the
X-ray transform Im, for any m ∈ N, which we also formulate as a question:

• Is the X-ray transform Im s-injective on Anosov manifolds? Can one prove generic
s-injectivity?

This is only known for the moment in the cases m = 0, 1 [DS03]. In particular, for m = 2,
this would prove that Anosov manifolds are locally rigid with respect to the marked length
spectrum. We also indicate a question here which might be easier to answer:

• Is the twisted X-ray transform generically injective (with respect to the connection)
on Anosov manifolds?

On twisted Conformal Killing Tensors:

• Given a fixed vector bundle E →M , equipped with a unitary connection ∇E , it is true
that generically with respect to the metric g, there are no CKTs for ∇E?
• Let (M, g) be a negatively-curved manifold. Can one prove that ∇LC has no CKTs of
degree m ≥ 2? What if (M, g) is only Anosov?

A positive answer to the last question would prove that there are no transparent manifolds,
except surfaces.

On transparent connections and holonomy problems:

• Are there examples of non-trivial transparent connections on Anosov manifolds of
dimension n ≥ 3?
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• What are the optimal assumptions to formulate in order to obtain rigidity in the
holonomy problem? What about stability estimates?
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Appendix

Appendix A. Elements of microlocal analysis

A.1. Pseudodifferential operators in Rn. We first recall the definition of pseudodifferen-
tial operators in the Euclidean space Rn. We start with the usual classes of symbols.

Definition A.1. Let m ∈ R, ρ ∈ (1/2, 1]. We define Smρ (Rn) to be the set of smooth functions
p ∈ C∞(T ∗Rn+1) such that for all α, β ∈ N:

‖p‖α,β := sup
|α′| ≤α,|β′|≤β

sup
(x,ξ)∈T ∗Rn

〈ξ〉−(m−ρ|α′|+(1−ρ)|β′|)|∂α′ξ ∂β
′

x p(x, ξ)| <∞, (A.1)

where 〈ξ〉 =
√

1 + |ξ|2. For ρ = 1, we will simply write Sm(Rn).

This class is invariant by the action by pullback of properly supported diffeomorphisms.
As a consequence, they are intrinsically defined on smooth closed manifolds. Namely, if
M is a smooth closed manifold, then p ∈ Sm(M) if and only if, in any local trivialization
φ : U → φ(U) ⊂ Rn (where U ⊂ M is an open subset), χφ∗pχ ∈ Sm(Rn), where χ is any
cutoff function supported in φ(U). These classes of symbols form a graded algebra of Fréchet
spaces (for each m ∈ R) with semi-norms given by (A.1).

Remark A.2. The order m ∈ R is fixed in the previous definition but it can actually be chosen
to vary. This is used extensively is Section 4. Namely, if m ∈ S0(Rn), then we define Smρ (Rn)

to be the set of smooth functions p ∈ C∞(T ∗Rn+1) such that for all indices α, β, there exists
a constant Cαβ > 0 such that:

∀(x, ξ) ∈ T ∗Rn, |∂αξ ∂βxp(x, ξ)| ≤ Cαβ〈ξ〉m(x,ξ)−ρ|α|+(1−ρ)|β|.

We refer to [FRS08] for further details. This class of symbols will appear in the proofs of the
meromorphic extension of the generator of Anosov flows. It enjoys the usual features of more
classical classes of symbols like the parametrix construction for instance, which are described
below.

We say that P is a pseudodifferential operator of order m ∈ R on Rn if there exists p ∈
Sm(Rn) such that for any function f ∈ C∞c (Rn):

Pf(x) =

∫
Rn

∫
Rn+1

eiξ·(x−y)p(x, ξ)f(y)dydξ (A.2)

This integral does not converge absolutely and has to be understood as an oscillatory integral :
for further details, we refer to [Abe12, Shu01]. In this case, we write P = Op(p) and we say
that the operator P is the quantization of p. We denote by Ψm(Rn) the set of pseudodifferential
operators of order m and we set Ψ−∞(Rn) := ∩m∈RΨm(Rn). These are operators with smooth
Schwartz kernel (and fast decay at infinity off the diagonal {x = y} in Rn × Rn). Eventually,
we denote by σP : Ψm(Rn)→ Sm(Rn)/Sm−1(Rn) the principal symbol of P , defined by

σP (x, ξ) := lim
h→0

hme−iS/hP (eiS/h)(x),

for (x, ξ) ∈ T ∗Rn, if S : C∞(Rn) is such that dS(x) = ξ.
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The space Ψm(Rn) is in one-to-one correspondance with Sm(Rn) (see [Mel03, Theorem 2.1])
via the quantization formula (A.2). This allows to transfer the Fréchet topology of Sm(Rn) to
the space Ψm(Rn). As a consequence, Ψm(Rn) is a Fréchet space endowed with the topology
given by the semi-norms of its full symbol (A.1).

A symbol p ∈ Sm(Rn) is said to be globally elliptic if there exists constants C,R > 0 such
that:

∀|ξ| ≥ R,∀x ∈ Rn, |p(x, ξ)| ≥ C〈ξ〉m.

It is said to be locally elliptic at (x0, ξ0) if there exists a conic neighborhood V of (x0, ξ0)15

such that:
∀(x, ξ) ∈ V, |ξ| ≥ R, |p(x, ξ)| ≥ C〈ξ〉m.

Given P ∈ Ψm(Rn), we say that it is locally elliptic at (x0, ξ0) if its principal symbol σP is.
We denote by ell(P ) the set of points (x0, ξ0) ∈ T ∗M at which P is locally elliptic. Note that
this is by construction an open conic subset of T ∗M \ {0}.

A.2. Pseudodifferential operators on compact manifolds. We now move to the case
of pseudodifferential operators on a smooth closed manifold M . There is no intrinsic way of
defining pseudodifferential operators on compact manifolds (although some constructions may
look more natural than others, there is always a part of choice in the definitions) but what is
important is that the resulting class of operators Ψm(M) obtained in the end is independent
of all the choices made. Moreover, all the important features of the calculus (principal symbol,
ellipticity) are independent of the choices made in the constructions.

We consider a cover of M by a finite number of open sets M = ∪iUi such that there exists
a smooth diffeomorphism φi : Ui → φi(Ui) ⊂ Rn+1. By assumption, since M is smooth, the
transition maps φi◦φ−1

j are smooth whenever they are defined. We consider a smooth partition
of unity

∑
i Φi = 1 subordinated to this cover ofM and smooth functions Ψi supported in each

patch Ui, defined such that Ψi ≡ 1 on the support of Φi. We call these elements (Ui,Φi,Ψi)i
a family of cutoff charts.

Definition A.3. A linear operator P : C∞(M) → C∞(M) is a pseudodifferential of order
m on M if and only if there exists a family of cutoff charts (Ui,Φi,Ψi)i such that, in the
decomposition

P =
∑
i

ΨiPΦi + (1−Ψi)PΦi, (A.3)

the operators ΨiPΦi can be written in coordinates

ΨiPΦif(φ−1
i (x)) = ψi Op(pi)ϕifi(x), (A.4)

for some symbols pi ∈ Sm(Rn+1) (Op being the quantization (A.2) in Euclidean space), where
x ∈ φi(Ui), fi := f ◦ φ−1

i and f ∈ C∞(M) is arbitrary, ψi := Ψi ◦ φ−1
i , ϕi := Φi ◦ φ−1

i and the
operators (1−Ψi)PΦi have smooth Schwartz kernel. We denote by Ψm(M) the class of such
operators.

15V is an open conic neighborhood of (x0, ξ0) of T ∗Rn \ {0} if it is open in T ∗Rn \ {0} and contains for
some ε > 0 small enough the set of points (x, ξ) ∈ T ∗Rn \ {0} such that |x− x0| < ε and |ξ/|ξ| − ξ0/|ξ0|| < ε.
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Another formulation is the following: if one chooses a family of cutoff charts, given a symbol
p ∈ Sm(M), (A.4) provides a formula of quantization Op(p) (which depends on the choice of
cutoff charts). Then the equality

Ψm(M) =
{

Op(p) +R | p ∈ Sm(M), R ∈ Ψ−∞(M)
}

holds (here R is a smoothing operator, that is an operator with smooth Schwartz kernel), that
is any other choice of cutoff charts produces the same class of operators. Note that once a
family of cutoff charts is chosen, the decomposition (A.3) of P is unique and one can endow
the Fréchet space Ψm(M) with the semi-norms in local coordinates

‖P‖α,β,γ =
∑
i

‖pi‖α,β + ‖(1−Ψi)PΦi‖γ , (A.5)

where ‖pi‖α,β is given by (A.1) and, confusing (1−Ψi)PΦi with its smooth Schwartz kernel,
we define for K ∈ C∞(M ×M) the semi-norms:

‖K‖γ := sup
|j|+|k| ≤γ

sup
x,y∈M

|∂jx∂kyK(x, y)|

The principal symbol map σm : Ψm(M) → Sm(M)/Sm−1(M) is a well-defined map, inde-
pendent of the quantization chosen. Let us recall some elementary properties of pseudodiffer-
ential operators:

Proposition A.4. (1) If P ∈ Ψm(M), then P : Hs(M) → Hs−m(M) is bounded for all
s ∈ R,

(2) If P1 ∈ Ψm1(M), P2 ∈ Ψm2(M), then P1 ◦ P2 ∈ Ψm1+m2(M) and σP1◦P2 = σP1σP2,

An operator R ∈ Ψ−∞(M) is bounded and compact as a map Hr(M) → Hs(M), for all
s, r ∈ R. We now fix a smooth density dµ onM . Every operator can be associated to a formal
adjoint P ∗ : C∞(M)→ C∞(M) which is also pseudodifferential and defined by the equality:

〈Pf1, f2〉L2(M,dµ) = 〈f1, P
∗f2〉L2(M,dµ), (A.6)

where f1, f2 ∈ C∞(M). We say that P is formally selfadjoint when P = P ∗. Note that the
adjoint P ∗ depends on a choice of (smooth) density dµ. This necessary choice can be overcome
by working with half-densities instead of functions but this will not be needed here.

Proposition A.5. If P ∈ Ψm(M) is globally elliptic, there exists Q ∈ Ψ−m(M) (also globally
elliptic) such that

PQ = 1 +R1, QP = 1 +R2,

where R1, R2 ∈ Ψ−∞(M). Moreover ker(P ) ⊂ C∞(M), it is finite-dimensional and ran(P |C∞(M)) ⊂
C∞(M) has finite codimension which coincides with that of ker(P ∗). It is therefore Fredholm
and the Fredholm index of P is the integer:

ind(P ) := dim ker(P )− dim ker(P ∗) <∞

In particular, if P is formally selfadjoint, then ind(P ) = 0.

We will denote by C−∞(M) := ∪s∈RHs(M) the space of distributions. The following lemma
on elliptic estimates is crucial:
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Lemma A.6. Let P ∈ Ψm(M) be an elliptic pseudodifferential operator. For all s, r ∈ R,
there exists a constant C := C(r, s) such that for all f ∈ C−∞(M) such that Pf ∈ Hs−m(M):

‖f‖Hs ≤ C (‖Pf‖Hs−m + ‖f‖Hr)

Moreover, if P : Hs(M)→ Hs−m(M) is injective for some (and thus any) s ∈ R, then:

‖f‖Hs ≤ C‖Pf‖Hs−m

Proof. Let Q ∈ Ψ−m(M) be a parametrix for P , i.e. such that QP = 1 + R, where R ∈
Ψ−∞(M). Then:

‖f‖Hs . ‖QPf‖Hs + ‖Rf‖Hs . ‖Pf‖Hs−m + ‖f‖Hr ,

since R : Hr(M)→ Hs(M) is bounded and Q : Hs−m(M)→ Hs(M) is bounded.
We now assume that P is invertible and we take r = s. Assume that the bound ‖f‖Hs .

‖Pf‖Hs−m does not hold, so we can find a family of elements fn ∈ Hs(M) such that ‖fn‖Hs =

1 and ‖fn‖Hs = 1 ≥ n‖Pfn‖Hs−m . So Pfn → 0 in Hs−m(M). But R : Hs(M) → Hs(M)

is compact and (fn)n∈N is bounded in Hs(M) so we can assume (up to extraction) that
Rfn → v ∈ Hs(M). By the elliptic estimate

‖fn‖Hs . ‖Pfn‖Hs−m + ‖Rfn‖Hs ,

we obtain that (fn)n∈N is a Cauchy sequence in Hs(M) which thus converges to w ∈ Hs(M).
But by continuity of P , Pfn → 0 = Pw so w ≡ 0 since P is injective. This is contradicted by
the fact that ‖w‖Hs = 1. �

Eventually, we recall Egorov’s Theorem, in a weak version:

Lemma A.7 (Egorov’s Theorem). Let a ∈ Sm(M) and F : M → M be a smooth dif-
feomorphism. Let F̃ : T ∗M → T ∗M be the symplectic lift of F , defined by F̃ (x, ξ) =

(F (x), dF (x)−> · ξ), where −> denotes the inverse transpose. Then:

F ∗Op(a)(F−1)∗ −Op(a ◦ F̃ ) ∈ Ψm−1(M).

As usual, one can define pseudodifferential operators P : C∞(M,E)→ C∞(M,F ) acting on
vector bundles E,F → M by taking local coordinates and matrix-valued pseudodifferential
operators in these coordinates. All the results previously stated still hold in this general
context. The principal symbol is then a map σP : T ∗M → Hom(E,F ) and ellipticity is
replaced by invertibility of σP (x, ξ) (as a linear map Ex → Fx) for large |ξ| → ∞. When
the vector bundles E and F have different ranks, ellipticity is replaced by injectivity of the
principal symbol with a coercive estimate, that is

‖σP (x, ξ)‖Ex→Fx ≥ C〈ξ〉m,

for |ξ| > R,C > 0. All the results also hold with very few changes when m has variable order.

A.3. Wavefront set of distributions.
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A.3.1. Definition.

Definition A.8 (Wavefront set of a distribution). Let u ∈ C−∞(M). A point (x0, ξ0) ∈
T ∗M \ {0} is not in the wavefront set WF(u) of u, if there exists a conic neighborhood U

of (x0, ξ0) such that for any smooth functions χ ∈ C∞c (π(U)) (π : T ∗M → M being the
projection), in any set of local coordinates, one has:

∀N ∈ N, sup
ξ∈U
|χ̂u(ξ)||ξ|N <∞.

This is well-defined i.e. independent of the choice of coordinates. An equivalent definition
is that (x0, ξ0) /∈ WF(u) if and only if there exists a pseudodifferential operator A of order
0 microlocally supported in the conic neighborhood U , elliptic at (x0, ξ0) such that Au ∈
C∞(M). By construction, the wavefront set of a distribution is a conic set in T ∗M \ {0}. We
will say that u ∈ C−∞(M) is smooth at (x0, ξ0) if (x0, ξ0) /∈WF(u).

If ı : Y →M is a smooth submanifold of M , then the conormal to Y is the set

N∗Y := {(x, ξ) ∈ T ∗M | ∀x ∈ Y,∀Z ∈ TxY, 〈ξ, Z〉 = 0} ⊂ T ∗M

It is a smooth vector bundle over Y . We will say that a distribution u ∈ C−∞(M) is conormal
to Y if WF(u) ⊂ N∗Y .

Example A.9 (Surface density). Let ı : Y →M be a submanifold. If σ is a smooth density
on Y , then σ can be seen as a distribution σ ∈ C−∞(M) on M by setting 〈σ, f〉 := 〈σ, f |Y 〉,
for f ∈ C∞(M). Then WF(σ) = N∗Y , i.e. σ is conormal to Y .

Indeed, by taking local coordinates, the computation actually boils down to considering
the case σ = φ(x)δ(x′ = 0), with x′ ∈ Rn−k, x ∈ Rk, where M ' Rn and N ' {x′ = 0},
φ ∈ C∞(Rk). But then, for χ ∈ C∞(Rn) localized in a neighborhood of (x, 0), and denoting
η = (ξ, ξ′), eη : (x, x′) 7→ eiη·(x,x

′), one has:

χ̂σ(ξ, ξ′) = 〈σ, χeη〉 =

∫
Rk
φ(x)χ(x, 0)eix·ξdx = O(|η|−∞)16

by the non-stationary phase lemma, unless ξ = 0. Thus

WF(σ) =
{

(0, ξ′), ξ′ ∈ Rn−k \ {0}
}

= N∗Rk

We can refine the definition of the wavefront set in order to evaluate the frequency behavior
of the distribution at infinity:

Definition A.10 (Hs-wavefront set). Let u ∈ C−∞(M). A point (x, ξ) /∈ WFs(u) if there
exists a conic neighborhood of (x, ξ) and a pseudodifferential operator A of order 0 microlocally
supported in this conic neighborhood, elliptic at (x, ξ) such that Au ∈ Hs(M). We will say
that u ∈ C−∞(M) is microlocally Hs at (x0, ξ0) if (x0, ξ0) /∈WFs(u).

Example A.11. Let δ0 be the Dirac mass at 0 in Rn. Then

WF−n/2(δ0) = {(0, ξ), ξ ∈ Rn \ {0}} ,

but WFs(δ0) = ∅ for all s < −n/2.
16By this, we mean that for all N ∈ N, there exists a constant CN > 0 such that the right-hand side is

bounded by CN |η|−N
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A.3.2. Elementary operations on distributions. We now introduce the multiplication of
distributions. We will denote by d vol the smooth Riemannian density on M . Given
u1, u2 ∈ C∞(M), the (complex) pairing

〈u1, u2〉C :=

∫
M
u1(x)u2(x)d vol(x)

is always well-defined (note that M is compact). We want to understand to what extent this
can be generalized to distributions u1, u2 ∈ C−∞(M).

Lemma A.12. Given u1, u2 ∈ C−∞(M) such that WF(u1) ∩WF(u2) = ∅, there exists A ∈
Ψ0(M) such that

WF(u1) ∩WF(A)17 = ∅, WF(u2) ∩WF(1−A∗) = ∅.

Then:
〈u1, u2〉C := 〈u2, Au1〉C + 〈u1, (1−A∗)u2〉C

is well-defined and independent of the choice of A, where the right-hand side is understood as
the pairing of a distribution with a smooth function.

To construct A, one can take A = Op(a) for some a ∈ S0(M) supported in a conic neigh-
borhood of WF(u1) (in particular, a ≡ 0 on WF(u2) since WF(u1) ∩WF(u2) = ∅) and such
that a ≡ 1 on WF(u1). We do not detail the proof which can be found in [Mel03, Proposition
4.9]. Then the real pairing is just 〈u1, u2〉 := 〈u1, u2〉C. Since

WF(u) = {(x,−ξ) | (x, ξ) ∈WF(u)} ,

it is defined as long as WF(u1) ∩ i(WF(u2)) = ∅, where i : T ∗M → T ∗M stands for the
involution i(x, ξ) = (x,−ξ). This provides the

Lemma A.13. Given u1, u2 ∈ C−∞(M) such that WF(u1)∩i(WF(u2)) = ∅, the multiplication
u1 × u2 ∈ C−∞(M) is well-defined by

∀f ∈ C∞(M), 〈u1u2, f〉 := 〈u1, fu2〉 = 〈fu1, u2〉

and coincides with the usual multiplication for u1, u2 ∈ C∞(M). Moreover:

WF(u1u2) ⊂{(x, ξ) | x ∈ supp(u1), (x, ξ) ∈WF(u2)}
∪ {(x, ξ) | x ∈ supp(u2), (x, ξ) ∈WF(u1)}
∪ {(x, ξ) | ξ = η1 + η2, (x, ηi) ∈WF(ui), i ∈ {1, 2}}

The proof of the first part of the lemma simply follows from the previous computation. As
to the wavefront set computation, it can be done directly in coordinates by using the definition.

We now introduce the pushforward of distributions. Let π : M × N → M be the left-
projection, where N is a smooth closed manifold18. We denote by (x, y) the coordinates on

17See Example A.21 below for a definition of WF(A).
18Once again, this can be generalized to the non-compact case, but then one has to consider distributions

with compact support in the product.
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M ×N , dx and dy are smooth measures on M and N . The pushforward π∗u of a distribution
u ∈ C−∞(M) is defined by duality according to the formula:

∀f ∈ C∞(M), 〈π∗u, f〉 := 〈u, π∗f〉,

where π∗f := f ◦ π is the pullback of f . In particular, if u ∈ C∞(M × N), this definition
coincides with

π∗u(x) =

∫
N
u(x, y)dy

The wavefront set of the pushforward is characterized by the following lemma:

Lemma A.14.

WF(π∗u) ⊂ {(x, ξ) ∈ T ∗M | ∃y ∈ N, (x, ξ, y, 0) ∈ T ∗(M ×N)}

We omit the proof, which can be done directly by using the characterization of the wave-
front set with the Fourier transform. Morally, integration kills all the singularities except the
ones which are really conormal to N i.e. the manifolds along which we integrate.

We now introduce the restriction of distributions. Let ı : Y → M be the embedding
of the smooth submanifold Y into M . Given u ∈ C−∞(M), the pullback ı∗u, that is the
restriction of u to Y , is not always well-defined. We denote by δY the smooth Riemannian
density obtained by restricting the metric g to Y and then taking the Riemannian volume
form induced. Morally, given f ∈ C∞(Y ), we want to define 〈ı∗u, f〉 = 〈u × δY , f̃〉, where f̃
is any smooth extension in a neighborhood of Y (under the condition that the multiplication
u× δY is defined). Note that by Example A.9, WF(δY ) ⊂ N∗Y .

Lemma A.15. Assume u ∈ C−∞(M) satisfies WF(u) ∩N∗Y = ∅ (so u is not conormal at
all). Then u× δY makes sense by Lemma A.13 and

∀f ∈ C∞(Y ), 〈ı∗u, f〉 := 〈u× δY , f̃〉,

is well-defined, independently of the extension f̃ . Moreover,

WF(ı∗u) ⊂ {(x, ξ) ∈ T ∗Y | ∃η ∈ N∗xY, (x, (ξ, η)) ∈WF(u)} ,

where (ξ, η) is seen as an element of T ∗xM .

It is actually not obvious that this definition is independent of the extension f̃ of f : the
proof can be done by an approximation argument (see [H0̈3, Theorem 8.2.3]).

We now introduce the pullback of distributions. Let f : M → N be a smooth map between
the two smooth compact manifolds M and N19. The normals of the map (or the conormal to
f(M)) is the set

Nf := N∗f(M) =
{

(f(x), ξ) ∈ T ∗N | x ∈M, df>ξ = 0
}

19If M and N are not compact, then one has to assume f is proper, i.e. the preimage of a compact subset
is a compact subset.
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The pullback f∗u of a distribution u ∈ C−∞(N) is not always defined, whereas that of a
smooth function is. If f is a diffeomorphism, then it is an elementary result that f∗u makes
sense in a unique way: this amounts to saying that distributions are intrinsically defined
i.e. are invariant by a change of coordinates. Moreover, the wavefront set of a distribution
u ∈ C−∞(N) is simply moved to

WF(f∗u) ⊂ f∗WF(u) =
{

(x, ξ) ∈ T ∗M | (f(x),df−>x ξ) ∈ T ∗N
}
,

where df−> stands for the inverse transpose. But if f is no longer a diffeomorphism, if it
maps spaces of different dimensions for instance, then the result may not be obvious.

We consider the graph

Graph(f) := {(x, y) ∈M ×N | y = f(x)} ı→M ×N

which is an embedded submanifold of M ×N (even if f is not a diffeomorphism!). We denote
by π2 : M × N → N the right-projection and by g : M → Graph(f) the diffeomorphism
g : x 7→ (x, f(x)). Then f = π2 ◦ i ◦ g. For u ∈ C−∞(N), we thus want to define f∗u by
g∗ ◦ ı∗ ◦ π∗2u. So we have to study separately these three maps and understand under which
conditions we can compose them. First, π∗2u = 1⊗ u is always defined and

WF(π∗2u) ⊂ {(x, 0, y, η) | (y, η) ∈ WF(u)}

In the same fashion, the pullback of a distribution by g∗ is always so one has to understand
when the restriction ı∗ is defined. But according to Lemma A.15, it is the case if WF(π∗2u) ∩
N∗Graph(f) = ∅. Note that

T Graph(f) = {(x, Z, f(x),df(Z)) | (x, Z) ∈ TM} ⊂ T (M ×N).

Thus N∗Graph(f) = {(x, 0, f(x), η) | (f(x), η) ∈ Nf} so ı∗ ◦ π∗2u is well-defined if WF(u) ∩
Nf = ∅.

Lemma A.16. Let u ∈ C−∞(N). If WF(u)∩Nf = ∅, then f∗u := g∗◦ı∗◦π∗2u is well-defined
and coincides for u ∈ C∞(N) with f∗u = u ◦ f . Moreover,

WF(f∗u) ⊂ f∗WF(u) =
{

(x,df>ξ) | (f(x), ξ) ∈WF(u)
}
.

Example A.17. Let ı : M → M × M be the embedding ı : x 7→ (x, x) of the diagonal
ı(M) =: ∆(M) ⊂ M ×M . Note that N∗∆(M) = {(x, ξ, x,−ξ) | (x, ξ) ∈ T ∗M}. Let A :

C∞(M)→ C−∞(M) be a linear operator with kernel KA. Assume

WF(KA) ∩N∗∆(M) = ∅

Then ı∗(KA) ∈ C−∞(M) is a well-defined distribution. We define the flat trace of A by

Tr[(A) := 〈ı∗(KA),1〉.

One can prove that the flat trace is independent of the density chosen on M to define the
Schwartz kernel. If A ∈ Ψ−∞, then A is a compact operator with smooth Schwartz kernel —
in particular, it is trace class and its trace coincides with its flat trace.

This last example is very important to us:
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Example A.18. Let X be a smooth vector field generating a flow (ϕt)tßR on the manifold
M and consider the propagator U(t) = e−tX . It acts on functions by pullback, namely
e−tXf(·) = f(ϕ−t(·)). The flow (ϕt)t∈R generates a Hamiltonian flow (Φt)t∈R on T ∗M given
by Φt(x, ξ) = (ϕt(x),dϕ−>t (ξ)), where A−> stands for the inverse transpose. Note that Φt is
the flow induced by the Hamiltonian vector field H obtained from the Hamiltonian p(x, ξ) :=

〈X(x), ξ〉, which is (i times) the principal symbol of X. As a consequence, Lemma A.16
describes its wavefront set:

WF(e−tXf) = {Φt(x, ξ) | (x, ξ) ∈WF(f)} .

Using Lemma A.14, we obtain that for all χ ∈ C∞c (R), if A :=
∫ +∞
−∞ χ(t)e−tXdt, then:

WF′(A) ⊂ {(Φt(x, ξ), (x, ξ)) | (x, ξ) ∈ Σ, t ∈ supp(χ)}

In other words, the operator A is smoothing in the flow-direction (since it is obtained by
integration in this direction) and propagates forward singularities (by the Hamiltonian flow
(Φt)t∈R) in the orthogonal directions to the flow. The operator Π introduced in this manuscript
is morally the operator A with χ ≡ 1 on R. This is no longer a FIO: indeed Π not only
propagates forward the singularities in the orthogonal directions to the flow, but it also creates
(from scratch) singularities in the stable and unstable bundles E∗s ∪ E∗u.

A.4. The canonical relation.

A.4.1. Linear operators. If A : C∞(M)→ C−∞(M) is a linear operator, we denote by KA ∈
C−∞(M×M) its Schwartz kernel. We define the canonical relation WF′(A) of A (also denoted
by CA) by

WF′(A) := {(x, ξ, y, η) | (x, ξ, y,−η) ∈WF(KA)}
Given f ∈ C∞(M), using the Schwartz kernel theorem, we know that

Au(x) = 〈KA(x, ·), u〉 =

∫
M
KA(x, y)u(y)dy,

where this equality has to be understood in a formal sense. By the previous operations
introduced, we can rewrite this as π2∗(KA × π∗2u), where π2 : M ×M →M is the projection
on the second coordinate. If we want to extend A to C−∞(M), then we have to understand this
decomposition of A in light of the elementary operations seen so far. Recall that π∗2f = 1 ⊗f
has wavefront set included in {(x, 0, y, η) | (y, η) ∈WF(u)}. As a consequence, KA × π∗2u

makes sense as a distribution if

WF(KA) ∩ {(x, 0, y,−η) | (y, η) ∈WF(u)} = ∅,

and by Lemma A.13:

WF(KA × π∗2u) ⊂ {(x, ξ, y, η) | y ∈ supp(u), (x, ξ, y, η) ∈WF(KA)}
∪ {(x, 0, y, η) | (x, y) ∈ supp(KA), (y, η) ∈WF(u)}
{(x, ξ, y, η) | y ∈ supp(u), (x, ξ, y, η) ∈WF(KA)}

(A.7)

By Lemma A.14, we know that:

WF(π2∗(KA × π∗2u) ⊂ {(x, ξ) | ∃y ∈M, (x, ξ, y, 0) ∈WF(KA × π∗2u)}
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As a consequence, in (A.7), the first set in the union of the right-hand side is immediately
ruled-out. We obtain:

WF(π2∗(KA × π∗2u) ⊂ {(x, ξ) | ∃y ∈ supp(u), (x, ξ, y, 0) ∈WF(KA)}
∪ {(x, ξ) | ∃(y, η) ∈ T ∗M, (x, ξ, y,−η) ∈WF(KA), (y, η) ∈WF(u)}

We introduce the compact notation

WF′(A) ◦WF(u) :=
{

(x, ξ) | ∃(y, η) ∈WF(u), (x, ξ, y, η) ∈WF′(A)
}

Note that this is precisely the last set on the right-hand side of the previous formula. We
write

WF(KA, u)1 := {(x, ξ) | ∃y ∈ supp(u), (x, ξ, y, 0) ∈WF(KA)} .
These points are the singularities created by A, no matter the regularity of u. In other words,
if u ∈ C∞(M), then WF(Au) ⊂WF(KA, u)1. We sum up this discussion in the

Lemma A.19. Let A : C∞(M) → C−∞(M) be a linear operator. Then A extends by conti-
nuity to a linear map

A :
{
u ∈ C−∞(M) | WF(KA) ∩ {(x, 0, y,−η) | (y, η) ∈WF(u)} = ∅

}
→ C−∞(M)

and WF(Au) ⊂WF(KA, u)1 ∪WF′(A) ◦WF(u).

As we will see, given a general operator A, there is no practical way to characterize its
Schwartz kernel by testing it against well-chosen distributions (unless we are given other
informations on A). To do this, one has to resort to semiclassical analysis which we do not
want to introduce here.

Example A.20. Let
Λ ⊂ T ∗(M ×M) \ {0} (A.8)

be a conic Lagrangian submanifold (i.e. such that the canonical symplectic form ω ⊕ −ω
vanishes on Λ). We say that K ∈ C−∞(M ×M) is Lagrangian with respect to Λ if WF(K) ⊂
Λ. The Fourier Integral Operators (FIOs) are the operators having Lagrangian distribution
kernels with Lagrangian included in T ∗M \ {0}×T ∗M \ {0}20 (and an order condition on the
symbol of their quantification, see [H0̈3, Chapter XXV]). In particular, if Λ is the Lagrangian
of a FIO A, then

WF(KA)1 := {(x, ξ) | ∃y ∈M, (x, ξ, y, 0) ∈WF(KA)} = ∅

As a consequence, the wavefront set relation in Lemma A.19 is simply: WF(Au) ⊂WF′(A) ◦
WF(u). Here WF′(A) = {(x, ξ, y,−η) | (x, ξ, y, η) ∈ Λ} is the canonical relation. In other
words, a FIO does not create singularities from scratch. It may only kill or duplicate (and
propagate) already existing singularities.

Example A.21. If P is a pseudodifferential operator on M , then KP is a distribution which
is conormal to the diagonal ∆(M) ⊂ M ×M , i.e. WF(KP ) ⊂ N∗∆(M). In other words, its
canonical relation WF′(P ) satisfies

WF′(P ) ⊂ ∆(T ∗M \ {0})
20Note that this is stronger than (A.8).
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We can define the wavefront set of P by

WF(P ) :=
{

(x, ξ) ∈ T ∗M \ {0} | (x, ξ, x, ξ) ∈WF′(P )
}

This has to be understood in the following way: the operator P is smoothing outside its
wavefront set WF(P ). The wavefront set WF(P ) is also called the essential support of P
or the microlocal support. If P = Op(p) is a quantization of p ∈ C∞(T ∗M), then WF(P )

coincides with the cone support of p, namely the complementary of the set of directions in
T ∗M for which p, as well as all its derivatives (both in the x and ξ variables), decays like
O(|ξ|−∞).

A.4.2. Composition of linear operators. If A,B : C∞(M) → C−∞(M) are linear operators
with smooth Schwartz kernel, then

KA◦B(x, y) =

∫
M
KA(x, z)KB(z, y)dz

Using the previous operations, this can be written as KA◦B = π2∗(π
∗
1,2KA × π∗2,3KB), where

π1,2(x, z, y) = (x, z), π2,3(x, z, y) = (z, y). This formula allows to generalize the composition
to operators with non-smooth Schwartz kernel. Repeating the arguments of Lemma A.19, one
can prove the

Lemma A.22. Assume A and B satisfy the condition
{(z, θ) | ∃x ∈M, (x, 0, z,−θ) ∈WF(KA)}
∩ {(z, θ) | ∃y ∈M, (z, θ, y, 0) ∈WF(KB)} = ∅.

Then, A◦B extends continuously as a linear operator on distributions satisfying Lemma A.19
and

WF′(A ◦B) ⊂WF′(A) ◦WF(B)

∪
{

(x, ξ, z, 0) | z ∈M,∃z′ ∈M, (x, ξ, z′, 0) ∈WF(KA)
}

∪
{

(z, 0, y, η) | z ∈M, ∃z′ ∈M, (z′, 0, y, η) ∈WF(KB)
}
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