The marked length spectrum of negatively-curved manifolds

Thibault Lefeuvre (joint work with Colin Guillarmou)

Institut de Mathématique d'Orsay

August 21st 2018

The marked length spectrum

- \bullet (M,g) smooth closed manifold with negative sectional curvature,
- \mathcal{C} set of free homotopy classes: each class $c \in \mathcal{C}$ is represented by a unique closed geodesic $\gamma \in c$,

Definition (The marked length spectrum)

$$L_g: \left| \begin{array}{c} \mathcal{C} \to \mathbb{R}_+^* \\ c \mapsto \ell_{\mathfrak{g}}(\gamma), \end{array} \right|$$

with $\gamma \in c$ unique closed geodesic and $\ell_g(\gamma)$ Riemannian length computed with respect to g.

 Definition still holds under the weaker assumption that the geodesic flow is Anosov (hyperbolic dynamics on the unit tangent bundle).

The marked length spectrum

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines the metric (up to isometries) i.e.: if g and g' have negative sectional curvature, same marked length spectrum $L_g = L_{g'}$, then there exists $\phi: M \to M$ smooth diffeomorphism such that $\phi^*g' = g$.

- The action of diffeomorphisms is a natural obstruction one cannot avoid,
- Why the marked length spectrum? The length spectrum (:= collection of lengths regardless of the homotopy) does not determine the metric (counterexamples by Vigneras '80)
- Conjecture still makes sense for Anosov geodesic flows.

An analogy: manifolds with boundary

On a negatively-curved manifold with strictly convex boundary, the
equivalent notion is the marked boundary distance function (:= the
Riemannian distance restricted to the boundary computed with
respect to homotopy classes).

An analogy: manifolds with boundary

If M is simply connected, this notion boils down to the boundary distance function
 : such manifolds are prototypes of simple manifolds (:= strictly convex boundary + no conjugate points + non-trapping)

Conjecture (Michel '81)

Simple manifolds are boundary distance rigid i.e. the boundary distance function determines the metric (up to isometries).

Selected global positive results to Michel's conjecture:
 Pestov-Uhlmann '03 in dimension 2, Stefanov-Uhlmann-Vasy '17 in dimension > 2 if existence of a strictly convex foliation (guaranteed if (M, g) non-positively curved)

Positive results

Conjecture (Burns-Katok '85)

The marked length spectrum of a negatively-curved manifold determines the metric (up to isometries) i.e.: if g and g' have negative sectional curvature, same marked length spectrum $L_g = L_{g'}$, then there exists $\phi: M \to M$ smooth diffeomorphism such that $\phi^*g' = g$.

- Croke '90, Otal '90: proof of the Conjecture in dimension 2,
- Katok '88: proof if g' conformal to g,
- Besson-Courtois-Gallot '95, Hamenstädt '99: proof if *g* is a locally symmetric space.
- Conjecture remains open in full generality in dimension > 2 + Anosov case in any dimension ?

Our contribution

Theorem (Guillarmou-L. '18)

Let (M,g) be a negatively-curved manifold. Then $\exists k \in \mathbb{N}^*, \mathcal{U}$ open \mathcal{C}^k -neighborhood of g such that: if $g' \in \mathcal{U}$ and $L_{g'} = L_g$, then g' is isometric to g.

- It is a local version of Burns-Katok's Conjecture,
- The proof gives stability estimates quantifying how close are isometry classes of g and g' in terms of $L_g/L_{g'}$
- Theorem also holds if: i) $\dim(M) = 2$ and g has Anosov geodesic flow, ii) $\dim(M) > 2$, g has Anosov geodesic flow and is non-positively curved.

Our contribution

Corollary (Guillarmou-L. '18)

For all $a \in \mathbb{R}$ and for all bounded set $\mathcal{B} \subset \mathcal{C}^k$, \exists at most finitely many isometry classes with same marked length spectrum, sectional curvature $K_{\mathcal{F}} \leq -a^2 < 0$ and curvature tensor bounded in \mathcal{B} .

- The Corollary follows from the Theorem by using compactness results of Hamilton '95,
- First general results in dimension > 2.

Idea of proof

Our proof uses tools from different areas:

- Geometric inverse problems (X-ray transform on closed manifolds)
- Hyperbolic dynamics (classical chaos on compact sets)
- Microlocal analysis (recent progress made in the analytic study of flows: meromorphic extension of the resolvent $(-X \pm \lambda)^{-1}$ with X geodesic vector field, anisotropic Sobolev spaces, Pollicott-Ruelle resonances ...)

The X-ray transform

- Infinitesimal (or "linear") version of the problem: if $(g_s)_{s\in(-1,1)}$ is a smooth deformation of the metric g such that $L_{g_s}=L_g$, is there a smooth isotopy $(\phi_s)_{s\in(-1,1)}$ such that $\phi_s^*g_s=g$?
- By differentiating L_{g_s}/L_g , this amounts to studying the *s*-injectivity of the X-ray transform over symmetric 2-tensors i.e. proving that

$$I_2^g: \left| \begin{array}{c} \mathcal{C}^0(M,S^2T^*M) \to \ell^\infty(\mathcal{C}) \\ f \mapsto \left(c \mapsto \frac{1}{\ell_g(\gamma)} \int_0^{\ell_g(\gamma)} f_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t)) dt \right) \end{array} \right|$$

 $(\gamma \in c \text{ unique closed geodesic})$ has kernel reduced to

$$\mathsf{ker}\ \mathit{I}_{2}^{\mathit{g}} = \left\{ \mathcal{L}_{\mathit{V}} \mathit{g}, \mathit{V} \in \mathcal{C}^{1}(\mathit{M}, \mathit{TM}) \right\}$$

(These elements are called potential tensors.)

Positive results for the linear problem

- Guillemin-Kazhdan '80: pioneer work, s-injectivity of I_2^g for (M, g) negatively-curved surface,
- Croke-Sharafutdinov '98: s-inj. of l_2^g for (M, g) negatively-curved manifold,
- Paternain-Salo-Uhlmann '14: s-inj. of I_2^g for (M, g) surface with Anosov geodesic flow.

One may try to pass from the linear to the local problem by using the inverse function theorem. Is the differential a bounded isomorphism? Problem: surjectivity of

$$\hat{\mathit{I}}_{2}^{\mathit{g}}:\mathcal{C}^{0}(\mathit{M},\mathit{S}^{2}\mathit{T}^{*}\mathit{M})/\text{ker }(\mathit{I}_{2}^{\mathit{g}}) \rightarrow \ell^{\infty}(\mathcal{C})$$
?

Need another approach: let us go back one moment to the case of manifolds with boundary ...

An analogy: manifolds with boundary

• In the study of marked boundary rigidity, it is convenient to look at the normal operator $N_2 := l_2^{g^*} l_2^g$, where

$$I_2^{g}(f)\underbrace{(x,v)}_{\in\partial_-SM}=\int_0^{I(x,v)}f_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))dt,$$

It is a pseudodifferential operator of order -1.

The operator Π_2

Idea (Guillarmou '15): In the case of a closed manifold with
 Anosov geodesic flow, there is a natural selfadjoint operator
 Π: H^s(SM) → H^{-s}(SM) on the unit tangent bundle SM obtained
 by weak limit of damped correlation (see also Faure-Sjöstrand '11):

$$\langle \Pi f, \psi \rangle_{L^{2}(SM)} = \lim_{\lambda \to 0^{+}} \int_{\mathbb{R}} e^{-\lambda |t|} \langle f \circ \varphi_{t}, \psi \rangle_{L^{2}(SM)}, \quad f, \psi \in \mathcal{C}^{\infty}(SM)$$

(φ_t geodesic flow). Moreover, if X is the geodesic vector field, $X \circ \Pi \equiv 0, \Pi \circ X \equiv 0$.

- Morally, one has to think that " $\Pi f(x,v) = \int_{-\infty}^{+\infty} f_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))dt$ "
- By microlocal techniques, **Dyatlov-Zworski** '16 computed the wavefront set of the Schwarz kernel of Π. If $\pi_2: \underbrace{(x,v)}_{\in SM} \mapsto \underbrace{(x,\otimes^2 v)}_{\in \mathscr{S}^2T^*M}$ this allows to prove that $\Pi_2:=\pi_{2*}\Pi\pi_2^*$ is a ΨDO of order -1 on symmetric 2-tensors, just like N_2 . It is elliptic on solenoidal tensors, which are the L^2 -orthogonal of potential tensors (= ker I_2^g).

The operator Π_2

- Problem: there is (a priori) no explicit link between Π_2 and I_2^g (contrary to the case with boundary where the relation between N_2 and I_2^g is explicit). Idea: the relation is obtained by a positive version of Livcic theorem due to **Lopes-Thieullen '03** for Anosov flows on closed manifolds.
- Then: s-injectivity of I_2^g + ellipticity of Π_2 provides stability estimate for f, solenoidal tensor:

$$||f||_{H^{-s-1}(M)} \lesssim ||\Pi \pi_2^* f||_{H^{-s}(M)}$$

 Combined with geometrical estimates (some due to Croke-Dairbekov-Sharafutdinov '03), the proof then boils down to a rather simple sequence of inequalities, similar to the analogous problem of marked boundary rigidity on manifolds with boundary (L. '18).

Perspectives

- It seems hopeless to obtain a global result with this technique: morally, we control the differential I_2^g of the marked length spectrum with tame estimates (loss of derivatives) like in the Nash-Moser Theorem \implies local result.
- Lower the assumptions in the corollary on the finiteness number of isometry classes with same marked length spectrum ?

Thank you for your attention !