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The marked length spectrum

(M, g) smooth closed manifold with negative sectional curvature,

C set of free homotopy classes: each class c ∈ C is represented by a
unique closed geodesic γ ∈ c ,

Definition (The marked length spectrum)

Lg :

∣∣∣∣ C → R∗+
c 7→ `g (γ),

with γ ∈ c unique closed geodesic and `g (γ) Riemannian length
computed with respect to g .

Definition still holds under the weaker assumption that the geodesic
flow is Anosov (hyperbolic dynamics on the unit tangent bundle).
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The marked length spectrum

Conjecture (Burns-Katok ’85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and g ′ have negative sectional
curvature, same marked length spectrum Lg = Lg ′ , then there exists
φ : M → M smooth diffeomorphism such that φ∗g ′ = g .

The action of diffeomorphisms is a natural obstruction one cannot
avoid,

Why the marked length spectrum ? The length spectrum (:=
collection of lengths regardless of the homotopy) does not determine
the metric (counterexamples by Vigneras ’80)

Conjecture still makes sense for Anosov geodesic flows.
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An analogy: manifolds with boundary

On a negatively-curved manifold with strictly convex boundary, the
equivalent notion is the marked boundary distance function (:= the
Riemannian distance restricted to the boundary computed with
respect to homotopy classes).
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An analogy: manifolds with boundary

If M is simply connected, this notion boils
down to the boundary distance function
: such manifolds are prototypes of simple
manifolds (:= strictly convex boundary + no
conjugate points + non-trapping)
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Conjecture (Michel ’81)

Simple manifolds are boundary distance rigid i.e. the boundary distance
function determines the metric (up to isometries).

Selected global positive results to Michel’s conjecture:
Pestov-Uhlmann ’03 in dimension 2, Stefanov-Uhlmann-Vasy
’17 in dimension > 2 if existence of a strictly convex foliation
(guaranteed if (M, g) non-positively curved)
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Positive results

Conjecture (Burns-Katok ’85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and g ′ have negative sectional
curvature, same marked length spectrum Lg = Lg ′ , then there exists
φ : M → M smooth diffeomorphism such that φ∗g ′ = g .

Croke ’90, Otal ’90: proof of the Conjecture in dimension 2,

Katok ’88: proof if g ′ conformal to g ,

Besson-Courtois-Gallot ’95, Hamenstädt ’99: proof if g is a
locally symmetric space.

Conjecture remains open in full generality in dimension > 2 +
Anosov case in any dimension ?
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Our contribution

Theorem (Guillarmou-L. ’18)

Let (M, g) be a negatively-curved manifold. Then ∃k ∈ N∗,U open
Ck -neighborhood of g such that: if g ′ ∈ U and Lg ′ = Lg , then g ′ is
isometric to g .

It is a local version of Burns-Katok’s Conjecture,

The proof gives stability estimates quantifying how close are
isometry classes of g and g ′ in terms of Lg/Lg ′

Theorem also holds if: i) dim(M) = 2 and g has Anosov geodesic
flow, ii) dim(M) > 2, g has Anosov geodesic flow and is
non-positively curved.

Thibault Lefeuvre (joint work with Colin Guillarmou) The marked length spectrum of negatively-curved manifolds



Our contribution

Corollary (Guillarmou-L. ’18)

For all a ∈ R and for all bounded set B ⊂ Ck , ∃ at most finitely many
isometry classes with same marked length spectrum, sectional curvature
Kg ≤ −a2 < 0 and curvature tensor bounded in B.

The Corollary follows from the Theorem by using compactness
results of Hamilton ’95,

First general results in dimension > 2.
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Idea of proof

Our proof uses tools from different areas:

Geometric inverse problems (X-ray transform on closed manifolds)

Hyperbolic dynamics (classical chaos on compact sets)

Microlocal analysis (recent progress made in the analytic study of
flows: meromorphic extension of the resolvent (−X ± λ)−1 with X

geodesic vector field, anisotropic Sobolev spaces, Pollicott-Ruelle
resonances ...)
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The X-ray transform

Infinitesimal (or "linear") version of the problem: if (gs)s∈(−1,1) is a
smooth deformation of the metric g such that Lgs = Lg , is there a
smooth isotopy (φs)s∈(−1,1) such that φ∗s gs = g ?

By differentiating Lgs/Lg , this amounts to studying the s-injectivity
of the X-ray transform over symmetric 2-tensors i.e. proving that

I g2 :

∣∣∣∣∣∣
C0(M,S2T ∗M)→ `∞(C)

f 7→
(
c 7→ 1

`g (γ)

∫ `g (γ)
0 fγ(t)(γ̇(t), γ̇(t))dt

)
(γ ∈ c unique closed geodesic) has kernel reduced to

ker I g2 =
{
LV g ,V ∈ C1(M,TM)

}
(These elements are called potential tensors.)
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Positive results for the linear problem

Guillemin-Kazhdan ’80: pioneer work, s-injectivity of I g2 for (M, g)

negatively-curved surface,

Croke-Sharafutdinov ’98: s-inj. of I g2 for (M, g) negatively-curved
manifold,

Paternain-Salo-Uhlmann ’14: s-inj. of I g2 for (M, g) surface with
Anosov geodesic flow.

One may try to pass from the linear to the local problem by using the
inverse function theorem. Is the differential a bounded isomorphism ?
Problem : surjectivity of

Î g2 : C0(M,S2T ∗M)/ker (I g2 )→ `∞(C)?

Need another approach: let us go back one moment to the case of
manifolds with boundary ...
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An analogy: manifolds with boundary

In the study of marked boundary rigidity, it is convenient to look at
the normal operator N2 := I g2

∗
I g2 , where

I g2 (f ) (x , v)︸ ︷︷ ︸
∈∂−SM

=

∫ l(x,v)

0
fγ(t)(γ̇(t), γ̇(t))dt,

It is a pseudodifferential operator of order −1.

M

@
−
SM

@+SM

(x; v)
γ
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The operator Π2

Idea (Guillarmou ’15): In the case of a closed manifold with
Anosov geodesic flow, there is a natural selfadjoint operator
Π : Hs(SM)→ H−s(SM) on the unit tangent bundle SM obtained
by weak limit of damped correlation (see also Faure-Sjöstrand ’11):

〈Πf , ψ〉L2(SM) = lim
λ→0+

∫
R
e−λ|t|〈f ◦ ϕt , ψ〉L2(SM), f , ψ ∈ C∞(SM)

(ϕt geodesic flow). Moreover, if X is the geodesic vector field,
X ◦ Π ≡ 0,Π ◦ X ≡ 0.

Morally, one has to think that ”Πf (x , v) =
∫ +∞
−∞ fγ(t)(γ̇(t), γ̇(t))dt”

By microlocal techniques, Dyatlov-Zworski ’16 computed the
wavefront set of the Schwarz kernel of Π. If π2 : (x , v)︸ ︷︷ ︸

∈SM

7→ (x ,⊗2v)︸ ︷︷ ︸
∈⊗2T∗M

,

this allows to prove that Π2 := π2∗Ππ
∗
2 is a ΨDO of order −1 on

symmetric 2-tensors, just like N2. It is elliptic on solenoidal tensors,
which are the L2-orthogonal of potential tensors (= ker I g2 ).
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The operator Π2

Problem: there is (a priori) no explicit link between Π2 and I g2
(contrary to the case with boundary where the relation between N2

and I g2 is explicit). Idea: the relation is obtained by a positive
version of Livcic theorem due to Lopes-Thieullen ’03 for Anosov
flows on closed manifolds.

Then: s-injectivity of I g2 + ellipticity of Π2 provides stability
estimate for f , solenoidal tensor:

‖f ‖H−s−1(M) . ‖Ππ∗2 f ‖H−s (M)

Combined with geometrical estimates (some due to
Croke-Dairbekov-Sharafutdinov ’03), the proof then boils down
to a rather simple sequence of inequalities, similar to the analogous
problem of marked boundary rigidity on manifolds with boundary (L.
’18).
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Perspectives

It seems hopeless to obtain a global result with this technique:
morally, we control the differential I g2 of the marked length spectrum
with tame estimates (loss of derivatives) like in the Nash-Moser
Theorem =⇒ local result.

Lower the assumptions in the corollary on the finiteness number of
isometry classes with same marked length spectrum ?
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Thank you for your attention !
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